
From Models to Interactive Systems
Tool Support and XIML

Peter Forbrig, Anke Dittmar, Daniel Reichart, Daniel Sinnig

Software Engineering Group D
epartment of Computer Science,University of Rostock,

D-18051 Rostock, Germany
[pforbrig|ad|dreichart|dsinnig]@informatik.uni-rostock.de

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

class

diagramTransformation Implementation

dialog

graph
abstract

user interface

application
model

user interface
model

Design

Design

Design

Transformation by patterns

Design

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

class

diagramTransformation Implementation

dialog

graph
abstract

user interface

application
model

user interface
model

Design

Design

Design

Transformation by patterns

Design

Transformation by patterns

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

class

diagramTransformation Implementation

dialog

graph
abstract

user interface

application
model

user interface
model

Design

Design

Design

Transformation by patterns

Design

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

class

diagramTransformation Implementation

dialog

graph
abstract

user interface

application
model

user interface
model

Design

Design

Design

Transformation by patterns

Design

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

class

diagramTransformation Implementation

dialog

graph
abstract

user interface

application
model

user interface
model

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

class

diagramTransformation Implementation

dialog

graph
abstract

user interface

application
model

user interface
model

Design

Design

Design

Transformation by patterns

Design

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue
Design

Design

Design

Transformation by patterns

Design

Transformation by patterns

class

diagramm

task

mode

l

user

model
b. -object

model

device

model

class

diagrammTransformation Implementation

dialogue

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

graph
abstract

user interface

application

model

dialogue

model

Design Design

Transformation by patterns

Transformation by patterns

class

diagram

task
model

l

use

model

b.-object

model

device
model

class

diagramTransformation Implementation

dialog

graph
abstract

user interface

application
model

user interface
model

Design

Design

Design

Transformation by patterns

Design

Transformation by patterns

ABSTRACT
This paper proposes a model-based approach for
developing interactive applications. In particular a tool for
deriving the navigational structure of the UI from task,
object, user and device models is introduced. The editor is
based on the XIML technology and allows simulations
considering temporal relations between task and design
decisions for the navigation dialogue.

rrrrrrrr

 KEYWORDS
 Model-based Design, Navigation Dialogue, Abstract

Prototype, XIML

INTRODUCTION
 Rapid development of user interfaces, as performed in the

course of prototyping, helps developers to understand the
functionality and facilitates the participation of users.

Figure 1: Model-based software development process

TaO PRINCIPLES AND XIML FRAMEWORK Interactive system development that takes into account the
work of end users has to comprise some representation of
this work. In order to develop software based on user tasks
and objects, several frameworks have been introduced. Our
approach is characterized by figure 1. It demonstrates that
the dialogue model and the application model have to be
based on the same analysis specification, which consists of
mutual related models of tasks, users, business objects and
devices.

The XIML (eXtensible Interface Markup Language) [16] is
a framework for specifying models for interactive systems.
It allows the description of tasks, objects, users and devices
as well as the description of user interfaces.
From our point of view it was fascinating to represent our
ideas of models by XIML specifications. This was possible
without problems because XIML allows introducing
relations between different model elements. One can
introduce relations between classes of the task model and
classes of the domain model. (Here domain model is once
again used as business-object model in our terminology.)
For instance the “task_has_artefact” relation is a binary
relation between a task and an object. In the same way
tools can be attached to tasks.

Software development is considered as a sequence of
transformations mainly controlled by patterns. We already
developed a tool for transformations controlled by design
patterns [9]. It is our goal to develop similar tools for the
user interface design. This paper is focused on a tool
supporting the transformation from task models to dialogue
models which is intended to be supported by patterns later
on.

It was also possible to allow more general temporal
relations for tasks [21] than usually used. Relations
between tasks at different levels of hierarchy are possible.

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

At first a tool was developed to read an XIML file, to
present different views for tasks, users and objects and to
allow an animation according to scenarios.

Figure 2: Start situation of animating a XIML
model for percolating coffee

Figure 4: Start situation of animating a XIML
model of an electronic shop.

Basic tasks (in rectangular boxes) can be executed from the
view point of tasks, users and domain objects. The attached
artefacts, the tools, the role, and the involved temporal
relations can be seen on the right hand side.

DESIGNING DIALOGUES
There are different strategies to design the dialogue model.
Janus [2] uses information mainly from the object model,
but most approaches are based on tasks. Teresa [3] follows
an idea of grouping tasks based on preconditions, which
allows an automatic generation of dialogue models. Using
our method of explicitly designing a dialogue graph

The screen shot of figure 3 portrays a situation after filling
water into the tank. There is only one basic task that can be
performed. Due to the temporal relations this is “Remove
old filter”. This can be checked by having a look at the
temporal relations displayed on the screen under “All
Temp. Dependencies”.

an alternative strategy by designing a very abstract user
interface can be employed. The software developer has to
decide which tasks are grouped together in one view and
how the transition from one view to another one is
specified. Views can simply be considered as a group of
elements.

This first experiment demonstrated the opportunities of
XIML and pushed the idea of using task models for
requirements analysis and design. In the next section we
will demonstrate how the design of navigation dialogues
can be supported. A dialogue graph consists of dialogue views and

transitions. There are five types of dialogue views and two
types of transition views, which are presented by Figure 8.

 Transition types: sequential, concurrent

 Dialogue view types:

single multi modal complex end

Figure 5: Elements of a dialogue graph
In contrast to sequential transition a concurrent transition
means that both views are still visible. Based on these
assumptions the idea emerged to develop an editor that
allows manipulating such graphs by attaching tasks to
transactions and to views. (If a task is attached to a view no
transition takes place by executing this task).

Figure 3: Situation during animation

Figure 4 presents the screen shot of an animation of a task
model for a simple electronic shop. It displays the
hierarchical structure and the temporal relations of tasks.
This task model is the basis for designing a navigation
dialogue later on in figure 6.

 DIALOGUE GRAPH EDITOR
This editor is able to read and write a file specifying task,
user and object models as XIML specification. A
representation of dialogue graphs was developed as well.

In the following we will look at an example of a dialog
graph for a mailing system containing a multiple view.
In figure 8 it is specified that there is a concurrent
transition and a sequential transitions between the views
“Window Mail List” and “Window Mail”. Assuming view
“Window Mail List” is active. By selecting a mail (Select
and open mail) a concurrent transition is executed. A view
“Window Mail” appears and view “Window Mail List”
stays visible. A sequential transition (e.g. initiated by
“Close mail”) results in a disappearing of the view which is
the origin of the transition (e.g. “Window Mail”).

With this editor it is possible to develop different dialogue
graphs for the same task model. Practically all models can
be stored together into one single XIML file.
On the left hand side of figure 6, the task model is visible.
It is the task model of figure 3. For this model a dialogue
graph was designed, which is presented on the right hand
side. One node is characterized as starting point. This
characterization is represented by a traffic light.
By selecting a task (e.g. create shop) and a transition (e.g.
sequential) a transition can be specified by drawing a line
between to nodes. In this way a task is attached to a
transition.

“Window Mail” is a multiple view. That means that the
concurrent transitions to this view have to be object-based.
For each object (in our example for each mail) an own
view is dynamically created.

Figure 6: Dialogue graph editor
Figure 8: Dialog graph for a mailing system

Clicking on the traffic light can animate the dialogue graph.
A new window appears containing all visible views. Figure
7 demonstrates a special situation during the animation.
Two views (“Main view” and “Search view”) are visible.
At this moment the view “Search view” is active but only
the task “enter_serach_criterion” can be executed. Thus,
the animation does not only consider specification from the
dialogue model itself but it interprets temporal relations
from task model as well. By clicking on the “Main view”
button this view will become active and all active task are
presented by active buttons.

The specification of figure 8 can be animated as well.
Figure 9 displays a screenshot taken after performing twice
“Select and open mail”.

Figure 9: Example of multiple views

In figure 8 there is no task model visible for the dialog
graph. Indeed there is no task model attached to the dialog
graph.

Figure 7: Animated dialogue graph editor

At the moment task models are not able to specify the all
necessary behaviour. If “Select and open mail” is specified
as iterative task, reading of one mail has to be finished
before the next mail can be read. Recursion might help to
solve the problem but the definition of a kind of “instance
iteration” operator seems to be more usable.
Reader familiar with CTTE [12] might recognize the
similarity of the icons in the example with those provided
in CTTE. The dialogue graph editor has an import interface
for CTTE models stored in XML format. Such models can
be imported and dialogue graphs can be developed as an
alternative to the user interface development of Teresa. The
task model for the electronic shop was developed with
CTTE and imported to our TaO system. The information
related to our methodology of artefacts, tools and roles was
attached later.
As already mentioned with the dialogue graph editor
several dialogue graphs can be designed for one analysis
model. All models can be animated and forthcoming users
can participate in the design of the user interface.

SUMMARY AND WORK TO BE DONE
It was outlined how the design process of interactive
systems can be structured and how it can be supported by
tools in its early phases. The metaphor of tasks, artefacts
and tools was used to describe models in the analysis
phase.
Such models can be the basis for developing dialogues as
well. One of such approaches is supported by Teresa within
the Cameleon project [3] by computing task sets.
In this paper, an alternative approach was presented, which
can be characterized as an interactive design process by
hierarchical dialog graphs. Tool support allows a joined
animation of the dialog graph specification (abstract
prototypes) with the corresponding task specification. The
abstract prototype is already animated according to the
temporal relations of the task model. Additionally the
animated task tree is visualized.
At the moment, specifications of object based transitions
are not supported in an optimal way. More precise object
information is necessary for this purpose. Patterns will be
used within this context as well. First concepts have
already been developed. They have to be refined in the
future.

REFERENCES
1. UIML Tutorial. http://www.harmonia.com

2. H. Balzert, “From OOA to GUIs: The JANUS System”,
Journal of Object-Oriented Programming, Febr. 1996, pp.
43-47.

3. Cameleon project,
http://giove.cnuce.cnr.it/cameleon/SIGatCHI.html.

4. J. Eisenstein, J. Vanderdonckt and A. Puerta, “Adapting to
Mobile Contexts with User-Interface Modeling”, Workshop

on Mobile Computing Systems and Applications 2000
(Monterey, CA, 7-8 December 2000), IEEE Press

5. J.D. Foley, History, Results and Bibliography of the User
Interface Design Environment (UIDE), an Early Model-
based Systems for User Interface Design and
Implementation, in Proc. of DSV-IS’94, Carrara, 8-10 June
1994, pp. 3-14.

6. P. Forbrig, R. Lämmel and D. Mannhaupt, “Patterns-
oriented Development with Rational Rose”, Rational Edge,
Vol. 1, No. 1, 2001,

7. P. Forbrig and A. Dittmar, “Interfacing Business Object
Models and User Models with Action Models”, Proc. HCI
International 2003, Vol. IV, p. 83-87, Greece

8. P. Forbrig an A. Dittmar, “Bridging the Gap between
Scenarios and Formal Models”, tProc. HCI International
2003, Vol. I, p. 98-102, Greece

9. E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design
Patterns. Addison-Wesley”, 1995

10. P. Johnson, “Human Computer Interaction: Psychology,
Task Analysis and Software Engineering”, McGRAW
HILL BOOK COMPANY, 1992.

11. G. Mori, F. Paternò, C. Santoro, Tool Support for
Designing Nomadic Applications, Proceedings of IUI 2003
-Miami, Florida, January 12-15, 2003.

12. F. Paterno, C. Mancini, S. Meniconi, ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models,
Proceedings Interact’97, Chapman&Hall , 1997, pp. 362-
369.

13. F. Paternò, Model-Based Design and Evaluation of
Interactive Applications. Springer, 2000

14. A. Puerta and J. Eisenstein, “XIML: A Common
Representation for Interaction Data”, Sixth International
Conference on Intelligent User Interfaces, IUI 2002.

15. UML: http://www.uml.org

16. XIML, http://www.ximl.org

17. A. Dittmar, “More precise descriptions of temporal
relations within task models”, DSV-IS 2000, Limerick,
June 2000.

18. P. Forbrig, A. Dittmar, D. Reichart, D. Sinnig, User-
Centred Design and Abstract Prototypes, Proc. BIR 2003,
p. 132 – 145, Berlin, September 2003.

19. D. Sinnig, H. Javahery, P. Forbrig, A. Seffah, The
Complicity of Model-Based Approaches and Patterns for
UI Engineering, Proc. BIR 2003, p. 120-131, Berlin,
September 2003.

20. XUL, http://www.xulplanet.com/ , 2003.

21. A. Dittmar, “More precise descriptions of temporal
relations within task models”, DSV-IS 2000, Limerick,
June 2000.

22. M. Biere, B. Bomsdorf and G. Szwillus, “The Visual Task
Model Builder”, Proceedings of the CADUI’99, Kluwer
Academic Publishers, 1999, pp. 245-256.

23. A. Dix, J. Finlay, G. Abowd and R. Beale, “Human
Computer Interaction”, Prentice Hall, 1

