Incremental Query Answering for
Implementing Document Retrieval Services

Volker Haarslevl and Ralf Mollert

Concordia University, Montrealt
YUniversity of Applied Sciences, Wedel

Abstract

Agent systems that search the Semantic Web are seen as killer applications for
description logic (DL) inference engines. The guiding examples for the Semantic
Web involve information and document retrieval tasks. The instance retrieval
inference service of description logic inference engines can be used as a basic
machinery for implementing agent-based retrieval systems. However, since in-
formation is permanently added to information sources, usually agents need to
return to previously visited servers in order to get updates for their queries over
time.

In this paper we present a software architecture that allows agents to register
instance retrieval queries at a certain inference server. We will see how agents
are notified when the result set of registered queries grows over time. The paper
describes new optimization techniques for incrementally computing answers for
sets of registered instance retrieval queries and reports on first experiences with
an implementation as part of the Racer system.

1 Motivation

Agent systems that search the Semantic Web are seen as killer applications for de-
scription logic (DL) inference engines. The guiding examples for the Semantic Web
involve information and document retrieval tasks. Agents hopping from node to node
try to gather information relevant for some topic of interest. This paper considers an
application scenario where documents are represented by A-box individuals associated
with certain roles and attributes for describing the documents. Then, the instance
retrieval inference service of description logic inference engines can be used as a basic
machinery for implementing agent-based document retrieval systems. Queries for doc-
uments are simply specified by concepts. Assuming an agent gets a set of document
names as a result, it records their attributes (and attribute values) accordingly and
then leaves the node (server) for seeking additional areas of the Semantic Web. How-
ever, since information is permanently added to information sources, usually agents
need to return to previously visited servers in order to get updates for their queries
over time. Experiences with existing systems indicate that permanent polling oper-
ations use more resources than appropriate. In addition, if queries, possibly from

different applications, are gathered in a query set, an inference server can derive an
optimal query answering strategy. Query registration is the basis for applying these
techniques.

In this paper we present a software architecture that allows agents to register
instance retrieval queries at a certain inference server. We will see how agents are
notified when the result set to registered queries grows over time. The paper describes
new optimization techniques for incrementally computing answers to sets of registered
instance retrieval queries and reports on first experiences with an implementation as
part of the Racer system [3].

2 The Racer Server and Racer Proxy

The Server is an application program which can read knowledge bases either from
local files or from remote Web servers (i.e., a Racer Server is also an HTTP client).
In turn, other client programs that need inference services can communicate with a
Racer Server via TCP-based protocols. OilEd can be seen as a specific client that
uses the DIG protocol [1] for communicating with a Racer Server, whereas RICE is
another client that uses a more low-level TCP protocol.

In the context of multiple graphical interfaces and multiple client programs (e.g.,
agents), a description logic inference server such as Racer will be used by more than
one thread. Thus, a serious server has to coordinate multi-user access in a similar way
as database systems do. For dealing with multiple clients, the Racer Server includes
a subsystem called the Racer Proxy. The Racer Proxy is started as a front-end to
an associated Racer Server. It is configured to use a port number for external client
access in the same way as a Racer Server. The port number of the associated Racer
Server must be specified at proxy startup time. Then, a Racer Proxy is accessed just
like a Racer Server, and it just forwards requests to a corresponding Racer Server.

The task of the Racer Proxy is to provide locks for inference services of the Racer
Server that it “manages” such that instructions and queries of multiple clients are
properly coordinated. For instance, queries for concept parents by one client are
delayed until the T-box is entirely classified in order to answer a query of another
client etc. A Racer Proxy can also be configured to use multiple Racer Servers for load
balancing (for details see the Racer Manual [6, Version 1.7.7 and later]). Racer Proxy is
written entirely in Java and is provided with source code for research purposes. The
Racer Proxy is also responsible for implementing the Racer publish and subscribe
interface, which is described in the next section.

3 A Document Retrieval Use Case

We assume that documents, for instance in PDF format, provide containers for meta
information in RDF format [9]. RDF structures representing meta information about
documents can be submitted to a Racer Server. Usually, Racer is only told the URL
of those documents. Given the URL, the Racer Server fetches RDF documents from
Web servers if appropriate. In particular, it is also possible to refer to a certain on-

tology in DAML [11] or OWL [10] format. Racer reads these ontologies from Web
Servers if required and represents ontology information as a T-box. Racer can read
DAML+OIL and OWL documents. Racer accepts the so-called OWL DL subset [10]
with some additional restrictions (such as approximated reasoning for nominals (see
[6] for details) and unique name assumption). DAML+OIL documents are interpreted
with the same restrictions as manifested in OWL DL (the sets of classes and instances
are disjoint, no reified statements, no treatment of class metaobjects etc.). Descrip-
tions in RDF documents (with OWL DL restrictions) are represented as A-boxes by
the Racer System (for details see the Racer User’s Guide [6]). For readability reasons,
however, in this paper we use the standard description logic syntax for examples using
the description logic SHZQ(D,,)~.

For the document retrieval use cases to be discussed in this section we assume an
ontology (T-box) Document_ontology containing the following axioms (an attribute
is a function whose range can be chosen from a concrete domain):

attribute(isbn, integer), attribute(n_copies_sold, integer),

Book C Document,

Article © Document,

Computer_Science_Document C Document,

Computer_Science_Book T Book I Computer_Science_Document,

Compiler_Construction_Book T Computer_Science_Book,

min(n_copies_sold, 3000) M Computer_Science_Document C
Computer_Science_Best_Seller

L4 TEST1
¥ DOCUMENT
ARTICLE
L BOOK
| COMPUTER-SCIENCE-BOOK
L COMPUTER-SCIENCE-DOCUMENT
| COMPUTER-SCIENCE-BOOK

Figure 1: Graphical display of the T-box taxonomy shown by RICE.

In Figure 1 a graphical representation of the taxonomy of the T-box is shown. Now we
consider an A-box providing information about particular documents. Stemming from
RDF meta information about documents in PDF format, document descriptions are
gathered in an A-box Current_documents. We assume a state in which the following
assertions are given':

Note that in Racer strings for authors names, say, could be represented using concrete domains.

document_1 : Article,
(document_1,|John Smith|) : has_author

document_2 : Book,
(document 2, |John Doel) : has_author,
(document_2,isbn_2) : has_isbn_number, equal(isbn_2,2234567),

document_3 : Book,
(document_3, |Otto Normalverbraucher|) : has_author,
(document_3,isbn_3) : has_isbn_number, equal(isbn_3,3234567),

In the document retrieval scenario discussed in this paper, queries for documents of
some kind are specified using concepts. The retrieval service is implemented using the
instance retrieval inference service offered by a Racer Server. Queries are answered
with respect to the A-box Current_documents and T-box Document_ontology (see
above).

It is obvious that in the document retrieval scenario introduced above, only some
individuals are expected to be in the result set of an instance retrieval query. These
“root” individuals are the documents in our scenario, e.g. document_1. For other
individuals, e.g. for authors such as |John Smith|, it is known in advance that they
are only accessed as role fillers of root individuals. Therefore, it is possible to explicitly
indicate so-called “public” individuals. This is called publishing an individual in
Racer terminology. For the example A-box we assume that the following statement is
executed: publish({document_1,document_2, document_3})

Published individuals can be returned in the result sets of specific instance re-
trieval queries (for other queries, e.g. role filler retrieval, publication is not relevant).
Using the Racer system, clients can subscribe to a “channel” on which individuals are
announced that are instances of a given query concept. As an example we consider an
agent subscription named ¢_1 with query concept Book and server "mo.fh-wedel.de"
running at port 8080. The A-box is called Current_documents, and it implicitly refers
to the ontology Document_ontology.

The following code fragment demonstrates how to interact with a Racer Server
from a Java application. The aim of the example is to demonstrate the relative ease
of use that such an API provides. In our scenario, we assume that the agent instructs
the Racer system to direct the channel to computer "mo.fh-wedel.de" at port 8080.
Before the subscription is sent to a Racer Server, the agent should make sure that
at "mo.fh-wedel.de", the assumed agent base station, a so-called listener process is
started at port 8080. This can be easily accomplished:

public class Listener {
public static void main(String[] argv) {
try {
ServerSocket socketServer = new ServerSocket(8080);

However, in the context of this paper, we use individuals for authors. Individuals can be surrounded
by bars if, for instance, the names include spaces.

while (true) {
Socket client = socketServer.accept();
DataInputStream in =
new DatalInputStream(
new BufferedInputStream(client.getInputStream()));
byte b[] = new byte[1024];
int num = in.read(b);
String result = new String(b);

}
} catch (IOException e) {

3

If a message comes in over the input stream, the variable result is bound accord-
ingly. Then, the message can be processed as suitable to the application. We do not
discuss details here. The subscription to the channel, i.e., the registration of the query,
can also be easily done using the JRacer interface as indicated with the following code
fragment (we assume Racer runs at node "racer.fh-wedel.de" on port 8088).

public class Subscription {
public static void main(String[] argv) {
RacerClient client = new RacerClient("racer.fh-wedel.de", 8088);
try {
client.openConnection() ;
try {
String result =
client.send
(" (subscribe q_1 Book" +
" Current_documents" +
" (:notification-method tcp mo.fh-wedel.de 8080))");
}

catch (RacerException e) {

}
}

client.closeConnection();
} catch (IOException e) {

}

The connection to the Racer server is represented with a client object (of class
RacerClient). The client object is used to send messages to the associated Racer
server (using the message send). Control flow stops until Racer acknowledges the
subscription.

In our example we consider the query ¢_1. After the query ¢_1 is registered,
Racer running at node "racer.fh-wedel.de" sends the following message string to
"mo.fh-wedel.de" listening on port 8080: "((g-1 document_2) (¢-1 document_3))".
The message is stored in the variable result. Of course, the client is responsible
for interpreting the result appropriately. In our agent scenario we assume that two
documents, document_2 and document_3, are recorded as possible hits to the query
(possibly together with retrieved values for the ISBN number etc.), but we do not go
into details here.

Next, we assume that the document information repository represented by the A-
box Current_documents is subsequently filled with information about new documents.

document_4 : Computer_Science_Document,
(document_4,isbn_4) : has_isbn_number, equal(isbn_4,2234567)

Much less is known about document_4, and after publishing it, nobody will be notified.
Although there is a subscription to a channel for Book, it cannot be proven that
document 4 is an instance of this concept.

Now we assume there are two additional subscriptions ¢_2 and ¢_3 to the concepts
Computer_Science_Document and Computer_Science_Best_Seller, respectively. For
query g_2 Racer immediately generates a message ((¢_2 document_4)) and redirects it
to the channel specified with the subscription statement. However, for ¢_3 no message
can be generated at subscription time. As time evolves, it might be the case that the
number of copies sold for document_4 become known. The A-box Current_documents
is extended with the following assertions:

(document_4,n_copies_4) : n_copies_sold, equal(n_copies_4,4000)

Since the information in the A-box now implies that document_4 is an instance of the
query concept in subscription ¢_3, the client is notified accordingly using the same
techniques as discussed above.

The example sketches how description logics in general, and the publish and sub-
scribe interface of Racer in particular, can be used to implement a document retrieval
system (for additional examples and details on the publish and subscribe interface
see the Racer User’s Guide [6]). In the next section we describe optimization tech-
niques for incrementally answering instance retrieval queries such that the vision of
the above-mentioned application scenario can become reality with description logic
inference technology.

4 Optimization Techniques

In description logic systems, usually all individuals mentioned in a A-box are subject
to be results of instance retrieval queries. This is perfectly sanctioned by the logical
semantics, However, in practical contexts in many cases only a set of strategic “root”
objects are interesting for clients to retrieve. Given a root object, other individuals

are usually accessed by retrieving fillers for certain roles. In our document retrieval
scenario, the root objects are documents, and other individuals (e.g., authors) are only
retrieved as filler of roles for documents. The publish and subscribe interface of Racer
allows for marking the root objects as published objects. In particular, computing an
index for document retrieval (know as realizing the A-box) can be limited to published
individuals only. Although being a pragmatic solution, the publication mechanism
allows for a tremendous reduction of workload for a description logic inference system.

Indeed, effective candidate reduction with few resources is mandatory in practice
to achieve adequate performance. Incremental query answering can also help here.
Once a set of instance retrieval queries is registered, old results can be stored. Thus,
for checking whether there are new elements in the result sets of registered queries
when an A-box is extended, previous individuals can be easily discarded from the
initial set of candidates. This is possible because of the incremental way of answering
queries as built into the Racer Server. It would be much harder to achieve if agents
were forced to continuously poll the information system because the Racer Server has
to guess which query results should be cached.

Since Racer can operate on sets of registered queries, queries can be ordered with
respect to subsumption. Given the partial order induced by the subsumption relations,
an optimal execution sequence for answering multiple queries can be generated with
a topological sorting algorithm. The more general queries are processed first, yielding
a (possibly reduced) set of candidates for more specific queries as a by-product. In
[5] we have introduced Dependency-based Binary Partitioning Search as a strategy
for answering instance retrieval queries (i.e., instance retrieval with and without A-
box realization). In addition, A-box optimization techniques such as individual model
merging are introduced in [7]. The publish and subscribe interface of Racer exploits
these query answering mechanisms.

A short case study demonstrates the importance of ordering queries w.r.t. the
subsumption relation. Given the T-box defined above we consider an A-box with the
following assertions (for n we use different settings):

doc_1 : Article,
doc_2 : Article,

doc_n : Article,
docn + 1 : Book,
doc_n + 2 : Book,

doc_n + n : Book,
docn + n+1: Computer_Science_Book,
doc_n + n + 2 : Computer_Science_Book,

doc_n + n + n : Computer_Science_Book

All individuals mentioned above are assumed to be published, and Racer is instructed
to answer instance retrieval queries by exploiting results gained from T-box classifica-

tion (subsumption-based query answering).

For demonstrating the importance of ordering queries, we consider the follow-
ing query set: {retrieve(Book),retrieve(Computer_Science_Book)}. There are two
strategies, either all instances of Computer_Science_Book are retrieved first (Strategy
1) or all instances of Book are retrieved first (Strategy 2).

Table 1: Runtimes (in secs) of instance retrieval query sets with different strategies.

’ n ‘ Gen. Time ‘ ASAT ‘ Strategy 1 | Strategy 2

10000 1 6 7 5
20000 3 10 29 19
30000 22 15 79 42
40000 34 23 164 115
50000 54 34 320 200
60000 80 42 904 552

The runtimes of the query sets under different strategies are indicated in Table 1.
In the first column the number n is specified (note that the A-box contains three times
as many individuals), in the second column the time to generate the problem is given
(i.e., the time to “fill” the A-box), in the third column the time for the initial A-box
consistency test is displayed, and in the last two columns the runtimes for the different
strategies are indicated. All tests were performed on a 1GHz-512MB Powerbook.

Table 1 reveals that for larger values of n, Strategy 2, i.e., to first retrieve all
instances of the superconcept Book, is approximately twice as fast as Strategy 1. The
reason is that with Strategy 2 the set of candidates for the second instance retrieval
query can be considerably reduced. The publish and subscribe facility provides the
basis for building query sets that can be answered using the above-mentioned opti-
mization strategies.

5 Realizing Local Closed World Assumptions

Feedback from many users of the Racer system indicates that, for example, instance
retrieval queries could profit from possibilities to “close” a knowledge base in one way
or another. Due to the non-monotonic nature of the closed-world assumption and the
ambiguities about what closing should actually mean, in description logic inference
systems usually there is no support for the closed-world assumption. Theoretically,
some approaches for this problem are already known (see e.g. [2]). However, from a
practical point of view, there are no implemented systems available that users can rely
on. With the publish and subscribe interface of Racer, users can achieve a similar ef-
fect. Consider, for instance, a query for a book which does not have an author. Because
of the open-world assumption, subscribing to a channel for Book M (<0 has_author)
does not make much sense. Nevertheless the agent can subscribe to a channel for
Book and a channel for (> 1 has_author). It can accumulate the results returned by

Racer into two variables S7 and Sa, respectively, and, in order to compute the set of
books for which there does not exist an author, it can consider the complement of S
wrt. S1. We see this strategy as an implementation of a local closed-world (LCW)
assumption.

However, as time evolves, authors for documents determined by the above-mentioned
query indeed might become known. In others words, the set Ss will probably be ex-
tended. In this case, the agent is responsible for implementing appropriate backtrack-
ing strategies, of course.

Obviously, a client application could also frequently poll a Racer Server for the
different sets S; and Sy. With the publish and subscribe interface unnecessary queries
can be avoided, and the Racer Server can optimize the computation of the result sets
for different queries. The LCW example demonstrates that the Racer publish and
subscribe interface is a very general mechanism, which can also be used to solve other
problems in applications involving knowledge representation.

6 Conclusion

Integrated into Semantic Web and distributed systems software infrastructure, Racer
offers a first experimental implementation of the publish and subscribe interface de-
scribed in this paper. With Racer, first results on optimization techniques for query
answering have been investigated such that distributed document retrieval systems
can be built on top of description logic inference technology. Due to our experiences,
current technology allows for several thousands of published documents to be handled
in an A-box that refers to a T-box with axioms for ten thousands of concept names
[4].

As a summary one can say that for almost all types of A-box instance retrieval
queries, computing the taxonomy induced by the T-box enables important optimiza-
tion techniques. SHZQ(D,)~ has the nice property that computations on T-box
information need not to be repeated if an A-box is changed. With the advent of nom-
inals in description logics such as SHOQ [8], future DL systems will have a hard time
to figure out what can be reused from those data structures computed from T-boxes
since concept classification depends on A-box information as part of the knowledge
base.

Acknowledgments

The idea to the publish and subscribe interface of Racer was born in a discussion
with Mike Ushold at the 2002 Description Logic Workshop in Toulouse. Furthermore,
in a discussion with Ragnhild van der Straeten, the exploitation of the publish and
subscribe interface for realizing local closed world assumptions became clear. The
Racer Proxy was implemented by Christian Finckler (University of Applied Sciences,
Wedel). Thanks to all of them. All shortcomings of this paper are due to our own
faults, of course.

References

1]

2]

S. Bechhofer, R. Moller, and P. Crowther. The DIG description interface. In
Proc. International Workshop on Description Logics — DL’03, 2003.

F.M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge
and negation as failure. ACM Transactions on Computational Logic, 3, April
2002.

V. Haarslev and R. Moller. Racer system description. In International Joint
Conference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena,
Ttaly., 2001.

V. Haarslev and R. Moller. High performance reasoning with very large knowledge
bases: A practical case study. In Seventeenth International Joint Conference on
Artificial Intelligence, IJCAI-01, August 4-10, 2001, Seattle, Washington, USA.,
2002.

V. Haarslev and R. Moéller. Optimization stategies for instance retrieval. In Proc.
International Workshop on Description Logics — DL’02, 2002.

V. Haarslev and R. Moller. The Racer user’s guide and reference manual, 2003.

V. Haarslev, R. Méller, and A.Y. Turhan. Exploiting pseudo models for TBox and
ABox reasoning in expressive description logics. In International Joint Conference
on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy. Springer-
Verlag, 2001.

I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, 2001.

Adobe Systems Inc. Embedding XMP metadata in application files, 2002.

F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL web ontology language reference, 2003.

F. van Harmelen, P.F. Patel-Schneider, and I. Horrocks (Editors). Reference
description of the DAML+OIL (march 2001) ontology markup language, 2001.

