
The ADELFE Methodology
For an Intranet System Design
Carole Bernon, Marie-Pierre Gleizes, Gauthier Picard, Pierre Glize

 Institut de Recherche en Informatique de Toulouse
118 route de Narbonne

31062 Toulouse Cedex, France

{ ber non, gl ei zes, pi car d, gl i ze} @i r i t . f r

Abstract. The paper presents the ADELFE methodology which is devoted to
software engineering of adaptive multi-agent systems. Adaptive software is
used in situations where either the environment is unpredictable or the system is
open. ADELFE guarantees that the software is developed according to the
AMAS theory1. We focus the presentation on analysis and design core work-
flows. In the analysis phase, the engineer is guided to decide to use adaptive
multi-agent technology and to identify the agents through the system and the
environment models. In the design phase, ADELFE provides the cooperative
agent’s model and helps the developer to define the local agents’ behavior.
These workflows are illustrated through the case study: “US West Global Vil-
lage” . Then the Adelfe methodology is compared with others methodologies.

1 Introduction

Progress realized in programming and more generally in computer science, allows us
to use software to solve more and more complex problems. The agent-based and
multi-agent based software gives solution for complex applications where the envi-
ronment is generally constrained. The next challenge is to build software that is more
robust than actual one in unpredictable environments like the Internet or mobile robots
moving in the real world. It now seems necessary to develop new models, new meth-
odologies and tools. In this area, we had proposed a theory for adaptive multi-agent
system design [3]. Now we’re developing a methodology named ADELFE which is an
open and evolutionary systems software engineering. It is dedicated to the developers
of adaptive multi-agent systems.

The objective of ADELFE is to cover all the phases of a classical software design
from the requirements to the deployment. It is based on the RUP (Rational Unified
Process) [9], as interpreted in the Neptune project [11], uses UML notations and adds
some specific steps to adaptive system design. As far as possible, the ADELFE project
will reuse both RUP and UML’s agent-oriented extensions. The aim is not to add

1 This theory has been developed and applied for the last 6 years at IRIT (Institut de Recherche en Infor-

matique de Toulouse). See http://www.irit.fr//SMAC

another methodology but to work on some aspects not already considered by existing
ones such as complex environment, dynamic, software adaptation. ADELFE is based
on the view of a multi-agent system as a dynamic organization consisting of various
cooperative agents.

Section 2 gives an overview of the main concepts used in ADELFE. The use of
ADELFE is illustrated by means of a case study: an Intranet system design, described
in section 3, which follows the specification of the US West Village given by Bhat-
tacherjee in [1]. The different workflows illustrated in the case study: requirements,
analysis and the design, are respectively presented in section 4, 5, and 6. Before con-
cluding in section 8, related works are discussed in section 7, in insisting on the main
commonalities and distinctions.

2 Main ADELFE Concepts

ADELFE2 is a French acronym that signifies “Toolkit for Designing Software with
Emergent Functionalities” . The main goal of ADELFE is to help and guide any de-
signer during the development of an adaptive multi-agent system. Thus, it will not be
assumed that the software developer is familiar with adaptive multi-agent systems but
the methodology uses a specific vocabulary which is first detailed in this section.

2.1 Focusing on Adaptive Systems

The DARPA defines self-adaptive software as follows: “self-adaptive software evalu-
ates its own behavior and changes behavior when the evaluation indicates that it is not
accomplishing what the software is intended to do, or when better functionality or
performance is possible” [13]. This software is used in situations where the unpredict-
able nature of the environment poses a formidable challenge. Therefore, self-adaptive
software must be more robust than classical one to continue to run in such an envi-
ronment.

We are working on a certain type of self-adaptive software named adaptive multi-
agent systems (AMAS). An AMAS is characterized by the following points: it is em-
bedded in an environment and composed of several agents, each agent carries out a
partial function and the agents’ organization during run-time makes the system realiz-
ing an emergent function.

2 ADELFE (Atelier pour le Développement de Logiciels à Fonctionnalité Emergente) is a national project

that started in December 2000 and is still in progress, it is supported by the French Ministry of the
Economy, Finance and Industry. ADELFE project partners are: IRIT (University of Toulouse III) and
L3I (University of La Rochelle) from academia and are ARTAL and TNI from industry.

2.2 Concerning the System

The reason why a designer uses ADELFE is mainly that he wants to develop a multi-
agent system (MAS). A “classical” definition given by [6] tells that a MAS is a system
composed of autonomous entities interacting in a common environment. From our
point of view, a MAS possesses also an environment and it can reach a behavioral (to
reproduce the behavior of a simulated entity) or a functional (to perform the task for
which the system had been built) adequacy. Furthermore, the important notion in a
MAS is the fact that the function is collectively realized, is coherent and has a mean-
ing.

Adaptive MAS specifically interest us; classically such a system is defined as a
MAS which is able to change its behavior to react to the evolution of its environment.
The specificity of our AMAS theory lies in the fact that we don't code the global func-
tion of the system within an agent. Each agent composing the system is able to change
its interactions with others. The global function is realized by the collective and if the
collective is able to change its interactions, the global function is then modified.
Therefore this capacity of self-organization enables the system to adapt itself and to
realize a function that it is not coded in the agent. The global function is then emerg-
ing.

2.3 Concerning the Non Cooperative Situations

When the environment is unpredictable or the system is open, traditional algorithms
fail because the developer cannot find algorithms which consider every possibility.
Our objective is to build systems that do the best they can when a difficulty is encoun-
tered. This difficulty can be viewed as an exception in classical programs. In the
agent’s viewpoint, we call exceptions non cooperative situations such as misunder-
standing, ambiguity, uselessness, conflict, and concurrency. We propose to the de-
signer not only to describe what an agent has to do to achieve its local goal but also
which local situations this agent must avoid and if these situations are detected how to
remove them.

2.4 Concerning the Agents

During the analysis phase, the methodology will lead the designer to think about de-
composing his system and it must therefore help him to decide if a component will be
an agent or a simple object. In ADELFE, we are only concerned in a certain kind of
agents which enable us to build AMAS. Therefore an agent must have some extra
characteristics than those described in [6]. Firstly, an agent is also ignoring the global
function of the system for this global function is emerging (from the agent level to the
multi-agent level). One perspective would be to have a tool to judge if the emerging
function is coherent with the expected one. Furthermore, an agent can detect non co-
operative situations and it always acts to come back to a cooperative one. This doesn’ t
mean that it is altruistic or always helping others agents but it is just trying to have
useful (from its point of view) interactions with others. What constraints each agent’s

behavior is the behavior of the collective. All the considered agents are composed of
five parts contributing to their behavior:

– Skills. An agent’s skills represent what it is able to do or what abilities it may
bring to the collective.

– Representation of itself, of others or of its environment or beliefs. These repre-
sentations are what the agent knows about itself, the others and its environ-
ment.

– Social attitude. It is what enables the agent to change its interactions with oth-
ers. This social attitude is based on what we call cooperation: if an agent de-
tects a non cooperative situation, it acts to come back to a “cooperative” state.

– Interaction language. It is what the agent needs to communicate directly or
not.

– Aptitudes. These aptitudes are the capacities an agent possesses to reason on its
representations and on its knowledge.

2.5 Concerning the Environment

The AMAS theory focuses on complex applications design. In [17], Wooldridge
writes that “one of the sources of such complexity is the nature of the environment” .
Thus the concepts used in ADELFE also concern the system environment. The classi-
fication proposed by [17] can be used to try to characterize the environment of the
system to build using ADELFE. This environment can be accessible or not, determi-
nistic or not, static or dynamic and/or discrete or continuous.

In applications developed with ADELFE the environment is rather inaccessible and
dynamic for the system doesn’ t know all about its environment, it does not have a
complete and accurate view of it, its actions can modify its environment but this latter
can also evolve due to other phenomena external with the system. In an AMAS with a
computational adequacy or linked to a human user, the environment is rather non-
continuous and deterministic, the number of possible actions is not finite and an an-
swer given by the system doesn’ t imply a definite reaction of the environment.

3 The “ US West Global Village” Case Study

The following requirements are extracted from the “US West Global Village” project
[1] in order to develop an internal company-owned computer networks or “ intranet” .
The Global Village project would play a key role in achieving the goals of the reengi-
neering initiative: improve business processes, increase employee productivity, and
enhance customer satisfaction while reducing costs. These end-user requirements are
derived from the analysis of the necessary dynamic of the society was slowed down by
its current human organization and the internal information support (mainly paper). In
order to by-pass this too static system (i.e. the US West company), a new communica-
tion mode must be proposed. To facilitate company-wide information processing and
distribution, the Internet-based technologies has naturally emerged because of the

internal skill of the company and its novelty as information support inside the com-
pany.

The early requirements in ADELFE correspond to a mutual agreement between the
customer (including the users) and the designer on what the system should and should
not do. Thus, the early requirements could be expressed as a continuous system adap-
tation (always the US West company) to a dynamic and constraining environment (i.e.
the customer’s needs) by the way of an “ intelligent” communication network. In short,
we assume that the early requirements can be supported by two technological ap-
proaches: the push technology and the pull technology.

– The requirements for the pull technology are the following: information shar-
ing, communication and collaboration between employees using electronic
mail, workflow software, and bulletin board system (BBS); transactions be-
tween employees which are interactive processes which allow employees to re-
quest specific information via on-line forms, and business computing.

– The requirements for the push technology concern: home page personalization,
learning of emerging needs, targeted advertising, spontaneous communication
and adaptive communities.

Thus, the Global Village can be seen as a dynamic organization reflecting -and also
transforming- the real internal organization of the company. The following sections of
the paper mainly focus on the application of the ADELFE methodology on the re-
quirements presented in this push technology part.

4 Late Requirements

The late requirements provide the environment model that is composed of a system-
environment interaction model and the characterization of the environment. The aims
are to define a view of the system, to transform this view in a use-case model, and to
organize and to manage the requirements (functional or not) and their priorities. From
a multi-agent point of view, the environment model is a primary objective to design
adaptive systems. The model is the result of a study of the different actors and their
possible interactions with the system. Data flows between the system and passive
actors are represented in collaboration diagrams. Interactions between the system and
the active actors are summarized in use-case diagrams and detailed in sequence dia-
grams.

Step 1: Definition of the Studied System. This definition is the result of the analysis
of the requirement set artifact. The output of this step is a set of the main terms that
define the system. The system to design allows exchanges of information between
several employees. The employees could have an active behavior, by sending e-mail
for example, or an inactive one, by receiving e-mail. Shared information consists in
web page contents or free text (mail, request …).

Step 2: Determination of the Actors. This step focuses on what may be in interac-
tion with the studied system in terms of passive or active actors, or constraints. Active

actors are employees and management operators. Employees are the main end-users of
this system; they may send or request information to other employees. Management
operators correspond to the system administrators3. Passive actors are the system da-
tabases: the employees database, the web pages database and the Bulletin Board Sys-
tem (BBS).

Step 3: Definition of the Context. This step requires a characterization of data flows
and interactions between passive or active actors and the system. This step produces
collaboration diagrams and sequence diagrams (actor/system or actor/actor). We iden-
tify five different patterns:

– Bilateral data flow between the system and the passive actors (employees data-
base, web pages database and BBS). These exchanges correspond to database
updating by the system;

– Bilateral interaction (request/response) between the system and an employee to
retrieve information (pull technology);

– Unilateral interaction from an employee to the system. The employee provides
new information to the system;

– Unilateral interaction from the system to an employee. The system communi-
cates a relevant information to an employee (push technology);

– Database updating by the management operator via the system. The manage-
ment operator can create, remove or update information about web pages or
employees.

Step 4: Character ization of the Environment. Using terms which are presented in
section 2.5, we characterize the environment of the system as being dynamic (the
evolution of the active actors is not only subjected to actions of the system), accessible
(the system can obtain all information about the environment’s state), non-
deterministic (the system is not able to know what are the effects of its action on an
employee), and continuous (the number of interactions is infinite).

Step 5: Determination of the Use Cases. The main objective of this classical step is
to clarify the different functionalities the system has to respond to. Only the active
actors are implied in these use cases which are the results of a functional requirement
set. The whole set of use cases is presented in figure 1 in which all possible interac-
tions between the system and the active actors are described. Each use case is detailed
in a specific sequence diagram, a textual description and Graphical User Interface
(GUI) prototypes.

3 In this article, we only focus on the information exchanges. We don’ t deal with management functions of

intranet system such as database or remote machine managing.

5 Analysis

After the five steps of the
requirements, the objec-
tive of the analysis work-
flow is to develop an
understanding of the sys-
tem, to structure it in
terms of components and
to know if the AMAS
theory is required.

Step 6: Domain Analysis
and Study of the Archi-
tecture of the System.
Domain analysis is a static
view and an abstraction of
the real world and the
linked entities. Consider-
ing separately each use-
case by defining scenarios, the designer has to divide the system into entities. These
entities may be evident in distributed problems (for instance on-line brokerage) or
may be more subtle in complex tasks solving (for instance flood prediction). The
result of this step is a set of entities in preliminary class diagrams.

The US West Global Village application is composed of several sites which are
geographically distributed and which concern a great number of employees and/or
web pages. A site is represented by the Si t eRep entity. In this site, information is
supported by a set of WebPageRep, Empl oyeeRep and BBSRep entities which respec-
tively encapsulate a web page representation, an employee representation or the BBS
representation. The Connect i onAssi st ant helps the employee to connect or to regis-
ter to the system; it maintains the employees’ profiles (login and password for exam-
ple) and verifies accesses to the system. The Si t eManager is the intermediary between
the management operator and the system. This medium enables the manager to update
web pages for example.

Step 7: Adequacy of the AM AS Theory. As a primary goal, a designer wants to
know if the AMAS theory is adequate to implement his application. This kind of pro-
gramming is sometimes completely useless. For example, having a system which is
able to adapt itself is completely useless if the algorithm required to resolve the task is
already known, if the task is not complex or if the system is closed and nothing unex-
pected can occur. A certain number of criteria are then proposed to the designer, via a
graphical tool in ADELFE, to help him to determine the adequacy of AMAS at two
levels: at the global level “ is an AMAS required to implement the system?” and at the
local level “do some agents need to be implemented like AMAS i.e. do some decom-
position needed” .

Figure 1. Use-case diagram for the US West
Global Village.

Step 8: Agent Identification. In this step, we are only interested in agents which
enable a designer to build AMAS. So the designer has to determine which entities fit
in with this agent type. This identification is done considering the definition of the
agents given in section 2 and their characteristics. Firstly we have to know where a lot
of evolution or dynamic is required. Then, for each entity identified during step 6, we
must examine if the entity has to be faced to unpredictable events and has to treat non
cooperative situations (as they are defined in section 2.3).

For the Si t eRep entity, employees and web pages can be removed, added to the site
or their information can be modified. The Si t eRep entity must therefore be able to
learn the changes at these levels. Furthermore a site may exchange information with
another distant site to gather information it doesn’ t possess locally, it is a means to
cooperate and the site can misunderstand a request which is coming from another site,
or it does not know to reply to the request because the request is out of the scope of
the information it has. These situations are some non cooperative situations and the
Si t eRep entity must react to them. Consequently it evolves a lot and will be viewed as
an agent.

The Connect i onAssi st ant entity is not an agent because its function doesn’ t
evolve, it hasn’ t any autonomy, it doesn’ t need to interact (cooperate, negotiate) with
other entities. In fact, it has not to cope with unpredictable events.

At the end of this step, by using similar reasoning, we can conclude that only
Si t eRep, Empl oyeeRep, BBSRep, WebPageRep entities are agents.

Step 9: Study of the Interactions between the Different Entities. The result of this
step is a set of sequence diagrams and activity diagrams which explains the possible
interactions between the different entities within the system. As the RUP is use-case
guided, for each use case, which has been defined (during step 5) between the system
and the environment, a sequence diagram has to be defined to show the internal view
and the interactions within the system.

6 Design

In this section, we detail the design workflow in four steps. Because the complete
design cannot be described in this paper, we only develop the steps which are not
existing in others methodologies such as the agent architecture and the modeling of
non cooperative situations.

Step 10: Detailed Architecture and Agent M odel. The first step of the design re-
quires to identify the software components and to describe them. The result provides
the architecture of the system in terms of needed blocks, classes, agents and interac-
tions. The agent model which represents the relationships between agents is included
in this architecture. The previously defined architecture can be refined by determining
if some design patterns and/or re-usable components can be used. For example, in
object-oriented methodologies designers try to re-use models such as customer-server

model… In ADELFE, we propose a specific design pattern named cooperative agent
architecture.

Step 11: Agent Architecture. Following the description given in the section 2.4, an
agent is composed of: two types of models, social attitudes, an interaction language,
and aptitudes. These components are then detailed:

– Skills model. If the agent must learn new skills, ADELFE suggests to the de-
signer to apply again the methodology to realize an adaptive multi-agent sys-
tem to implement the skills of the considered agent. The skills of a Si t eRep
agent are the sum of the skills of its internal agents. Its skills may evolve a lot;
this is why they compose an adaptive multi-agent system. The agents of this
system are described in the step 8. The skills of WebPageRep, BBSRep, Empl oy-

eeRep agents are the information possessed by the web pages, the BBS or the
employees.

– Representation of itself, of others or of its environment models. They can be
represented by methods and/or attributes if this information is a static one. If
they have to evolve and if the agent may learn new representations, ADELFE
tells the designer to apply again the methodology to realize an adaptive multi-
agent system for implementing the representations of the considered agent. The
representations of a Si t eRep agent may evolve during runtime and this agent
has to adjust them. Therefore an adaptive multi-agent system is required to im-
plement its representation of itself or of other Si t eRep agents. The ADELFE
methodology is started again to implement the software to manage these repre-
sentations. In the same way, the representation possessed by the different
agents within a same site (WebPageRep, BBSRep, Empl oyeeRep) may evolve dur-
ing runtime and each agent has to adjust it. Therefore the ADELFE methodol-
ogy is applied again to implement these representations as adaptive multi-agent
systems.

– The interaction language between agents can reuse the mailbox concept to
physically exchange information between several machines. Some acts of ACL
such as request, inform… can be reused to communicate.

– Aptitudes allow an agent to learn (to add, to update and to remove) the repre-
sentation of itself and of others, and to interpret a received message.

Step 12: Non Cooperative Situations M odel. The designer must fill up a table for
each Non Cooperative Situation (NCS). This table contains the agent’s state, the tex-
tual description of the NCS, the conditions and actions linked to the NCS (as it is done
for the Si t eRep agent in the next section). The conditions describe the different ele-
ments that enable to locally detect the NCS. The actions describe what the agent has to
do to remove this NCS.

In the case study, we found four NCS for the Si t eRep agent:
1. NCS1 - Total lack of understanding. Condition: the agent compares the contents of

the received request with the representation of itself and deduces if the request is
understood. Action: the agent searches if it knows other sites which could be rele-
vant for the received request. If it finds some it sends the request to them.

2. NCS2 - Partial lack of understanding. Condition: only one part of the received
message has a meaning for the agent. Action: this agent brings to the sender the
partial answer associated to the understood part of the message, it sends the other
part of the request to a more relevant agent.

3. NCS3 - Ambiguity. Condition: a received message has several meanings for the
agent. Action: it turns it up to the sender for clarification; if this latter cannot an-
swer, it turns it up to its own sender.

4. NCS4 – Conflicts. Condition: two agents want to access to a service which provides
a limited resource and their demand exceeds the offer. Action: the Si t eRep agent
has to try to relax constraints.
The Non Cooperative Situations for the WebPageRep, BBSRep, Empl oyeeRep

Agents are the same as those encountered by a Si t eRep agent. There is a difference in
the actions realized in NCS1 and NCS2, the agent searches if it knows other agents
within the site that could be relevant for the received request. If it finds some agents it
sends the request to them. If it does not find such agents it sends the request to its
Si t eRep agent. The NCS will guide the engineer, during the construction in the im-
plementation workflow.

Step 13: Class Diagrams. This step provides the different class diagrams for taking
the GUI and database designs into account. These class diagrams are also refinements
of the class diagram at step 6 and of the architecture at step 11.

7 Compar ison to Other Approaches

In some recent states of the art about agent-oriented software engineering [8], [16], the
authors divided globally methodologies into two groups: the object-oriented based
methodologies and those that come from the knowledge engineering or other tech-
niques. Because ADELFE belongs to the first category, we compare in this section
only some representative methodologies of the first category like: AAII [10], AOR
(Agent-Object Relationship) [15], AUML [12], GAIA [18], MESSAGE [5], TROPOS
[4]. The comparison presented here isn’ t a detailed one that follows each step of a
methodology. It is rather a comparison focusing on some main features, from general
ones to more precise ones, of the considered methodologies.

The Extend of Coverage Over the Different Phases. The methodology designer
should be interested in developing a detailed and complete methodology from existing
analysis till software deployment and maintenance. It is now widely accepted that the
core workflows of a methodology are the requirements4, the analysis, the design, the
development (also called implementation) and the deployment workflows [9].

Some methodologies cover the entire process of software engineering such as
TROPOS, MESSAGE and ADELFE. For example, TROPOS insists a lot on the re-
quirement phase which is divided into early requirements and late requirements.

4 In some methodologies, requirements are included in the analysis phase.

MESSAGE covers at least analysis and design phases but it should also explain the
relationships with implementation, testing and deployment.

Other methodologies essentially process the analysis and the design phases. AAII
provides specialized set of models: the agent and the interaction models capture the
notion of roles, responsibilities, services and control relationship between agents at the
external level and the belief, goal and plan models to design BDI agents at the internal
level. In GAIA, the analysis phase consists in filling up the role and the interactions
models. The agent, service and acquaintance models are developed in the design
phase. Odell, Parunak and Bauer’s works propose a representation of the Agent Inter-
action Protocols (AIP). Then, they suggest further extension to UML in AUML in
extending sequence diagrams to include richer role specification and in changing the
deployment diagram definition to allow representation of mobile agents. AOR focuses
on analysis and design of organizational information systems in which an information
system is an agent composed of sub-agents and in interaction with external agents.

The Specialization of the M ethodology for an Application. The challenge of agent
or multi-agent methodologies development is the same: to help the designers for build-
ing complex systems such as multi-agent systems. Two categories of works could be
found: those which are general high-level methodologies, like AAII, AUML, GAIA
and those which focus on a specific design because the methodology is dedicated to a
field of applications.

AOR concerns information systems design and MESSAGE deals with the devel-
opment of agent-based applications in the telecommunications domain. ADELFE was
developed for applications where:

– The system's environment is dynamic, making it ineffective to enumerate
exhaustively all the situations the system may encounter.

– The system is open and therefore dynamic because it is constituted of a shifting
number of components.

– The task the system has to achieve is so complex that we cannot guarantee a
perfect design.

– The way by which the system may achieve the task it has been assigned is dif-
ficult or even impossible to apprehend globally by the designer.

So it is a suitable methodology for the development of adaptive multi-agent-
systems.

MESSAGE and ADELFE give guidelines for the identification of the application
areas where agent technology for MESSAGE and adaptive systems technology for
ADELFE is better suited than other technologies e.g. object-oriented technologies. To
guide the designers which are not specialized in agent or MAS technology, a tool in
ADELFE helps them to decide if ADELFE is useful to design the software. This dif-
fers from most of the methodologies in which the question: ” Is the problem requires
agent or MA technology?” is not asked because the initial hypothesis is that agent or
multi-agent techniques are available and relevant for the application.

The Under lying Specific Architecture. Inside the AAII methodology, the internal
model is concerned with the internal of an agent and based upon the Belief Desire

Intention agent architecture. Inside ADELFE, at the agent level in the design phase,
the agent model proposed to the designer is a Cooperative Agent (CA) architecture
[7]. In other methodologies such as AUML, GAIA, MESSAGE, TROPOS the archi-
tecture of the implemented agents is not defined and it is quite open. Note that
TROPOS offers different architecture styles (flat structure, pyramid, joint venture…)
for its architectural design phase.

From the Existing Object-Or iented M ethodology or Notation. In the cited meth-
odologies, all are derived from object-oriented ones except AOR which is inspired by
the agent-oriented programming proposal of Shoham [14]. By building upon and
adapting existing well understood methodology, the authors take advantage of the
maturity and the well-known object-oriented methodology and aim to develop a meth-
odology that will be easily used and understood by software analysts and engineers.
MESSAGE and ADELFE are based on the RUP methodology and uses UML notation
or extension of UML already done in AUML in particular the AIP notations [12]. This
choice is justified because UML is a de facto standard for object-oriented modeling
and that promoted its rapid take-up. TROPOS adopts the i* methodology [19] for
requirements workflow and AUML for the detailed design workflow. AAII draws
primarily upon object-oriented methodologies and extends them with some agent-
based concepts. GAIA is based on the FUSION methodology.

Static Domain Vs Dynamic Domain. The actual challenge of methodologies is to
support the software development which is open, have evolving structure, can react to
unexpected events from its environment. This kind of software must become more
robust than actual one.

The dynamic aspect is naturally taken into account at three levels of ADELFE: at
the environment-system interactions level, at the level of the system composition i.e.
agents could be added to or removed from the system and at the agent level i.e.
agent’s beliefs and skills can evolve. TROPOS expresses the dynamic and opening of
the application in the requirements phases with the model of the environment and with
particular soft goals. For example in the Media shop case study there is soft goal
adaptability. But the methodology does not give guidelines for designing the right
agents’ behavior allowing the adaptability of the system. GAIA indicates that the
domain covered by the methodology is static and that the methodology is dedicated to
closed domain where agents’ skills and beliefs are static at runtime. But Zambonelli,
Jennings and al. [20] propose some improvements of GAIA to support applications in
dynamic domains. AOR allows an integrated treatment of the static, dynamic and
deontic aspects of information systems. Many other methodologies, like AAII,
MESSAGE, do not focus on the dynamic aspect of the software environment and on
the adaptation abilities of the software.

The Role M odel. The role is an important concept in the recent methodologies. It
represents an abstract level of agent description. Generally, roles are defined in the
analysis phase of the methodologies like in AAII, AUML, GAIA, MESSAGE or
TROPOS. The roles in AAII enable the elaboration of an agent class hierarchy. A role

is described by a set of responsibilities and responsibilities are described as a set of
services. In GAIA, a role is defined by four attributes: responsibilities, permissions,
activities and protocols. The role model is a requirements guided identification of the
key roles in the system. In MESSAGE, roles and agents are the main concepts in-
volved in the agent model. The actors can be agents, positions or roles in TROPOS
and they are produced at the early requirements analysis.

In some methodologies, the role concept is not explicitly present, because the de-
scription of the agents and relations between agents are made at a less abstract level.
In AOR, the main concepts are agents, events, actions, commitments, claims and ob-
jects. In ADELFE the definition of the roles for each agent is not necessary to develop
the system because the agent could change its role during run-time. If the agents in the
system can be observed during run-time, the observer can give roles to them. The
closest notion to the role one is the skill concept. But skills defined for each agent do
not represent its role because they are elementary actions an agent is able to do.

The Environment M odel. In TROPOS and ADELFE, the environment model is
elaborated in the requirements phase or workflow. The environment is the environ-
ment within which the system will operate. The model of TROPOS is described in
terms of actors, their goals and interdependencies. Because ADELFE is interested in
adaptive systems, the environment is a key notion. The model of ADELFE is de-
scribed in terms of passive and active actors and sequence diagrams to explicit the
kind of exchanges between the system and its environment. In AOR the environment
appears through the notion of external agents. In MESSAGE, the domain model cap-
tures some entities of the system environment and the interactions with the environ-
ment are described for each role in terms of sensory inputs and acquaintances, re-
sources ownership and accesses, and finally tasks and actions. In AAII, the relation
between the agent and the environment is taken into account in the interaction model.
But in general, the environment modeling is not a central point in existing methodolo-
gies. In GAIA and AUML there is no particular model of the environment.

The Identification of the Agents. In some applications such as simulations (prey-
predators systems, ant colony simulation, RoboCup…), designers have no difficulty to
define what an agent is in the system. In some other applications such as problem
solving applications (planning management, business process management or equation
solving, …) it is difficult to a priori know what will be an agent in the system. It is the
reason why it is necessary to help the designer to identify the agents in an agent-
oriented methodology.

In AUML and GAIA, the agents are already identified and the methodology pro-
vides nothing to realize this identification. The AOR and TROPOS methodologies do
not provide guidelines to identify agents in the system to develop. AOR distinguishes
artificial agents such as software agents or robots, human agents and institutional
agents and in TROPOS the agents are found inside the actors’ set.

In AAII, the elaboration and refinement of the agent model and the interaction
model help the designer to define and refine agent classes and to give the multiplicity

and the lifetime of agent instances. A fine-grained model of agency is identified from
role, responsibilities and services.

The agent definition, which is given in MESSAGE and in ADELFE, defines the
features that will be ascribed to the entities that the developer will choose to consider
as agents.

 In ADELFE, after the adequacy phase, the developer knows his system must be
adaptive. So the agents must be found in the part of the system where adaptability is
required. Note that the concept of agent in ADELFE is a specific type of agents with
specific properties (see section 2.4).

8 CONCLUSION

The aim of this paper was to present the ADELFE methodology. ADELFE is an
agent-oriented methodology suited to adaptive multi-agent systems and it follows the
different steps proposed by the RUP as interpreted by Neptune [11]. We had focused
on the main contributions of ADELFE concerning the kind of MAS we are interested
in. This had been done through the description of the first three core workflows pro-
vided by the RUP and adapted to ADELFE using a case study presented by Bhat-
tacherjee in [1]. Further in this paper we had compared ADELFE with other method-
ologies like AAII, AOR, AUML, GAIA, MESSAGE and TROPOS.

The main contributions of ADELFE can be summed up in four points:
– Adelfe can be used by a designer who is not specialized in building AMAS;
– it can take into account the high dynamic of the system environment through

the application of the AMAS theory;
– it is able to tell him if an AMAS is required to build his system using the ade-

quacy step;
– it helps him to find what components of his system need to be treated like

agents belonging to the AMAS theory (cooperative agents) and guide him to
build them.

Furthermore, we have some perspectives for ADELFE which will be able to pro-
vide some tools and libraries to ease the design and development of systems. For ex-
ample, we think that it is better for a designer to have the ability of rapid prototyping
to judge the validity of his architecture. We would like also to assist the designer if
another methodology is more adequate to the system he wants to build.

ADELFE is going to be implemented within the OpenTool© software provided by
TNI firm (http://www.tni.fr). OpenTool is a graphical tool like Rational Rose© which
supports UML notation.

The authors would like to thank Valérie Camps (L3I), Jean-Paul Bodeveix, Thierry Millan

and Christian Percebois (IRIT) for their remarks and their help regarding especially UML.

References

[1] A. Bhattacherjee - US WEST Global Village -
http://coba.usf.edu/departments/isds/faculty/-abhatt/cases/USWest.pdf

[2] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, G. Pavon, P. Kearney, J.
Stark & P. Massonet - Agent Oriented Analysis using MESSAGE/UML - AOSE 2001.

[3] V. Camps, M-P. Gleizes, S. Trouilhet - Properties Analysis of a Learning Algorithm for
Adaptive Systems – In Int. Journal of Computing Anticipatory Systems, Editions Chaos,
Liège, Belgium, 1998.

[4] J. Castro, M. Kolp & J. Mylopoulos – A Requirements-driven Development Methodology
– In Proc. of the 13th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’01), Stafford, UK – June, 2001.

[5] Project P907-GI - MESSAGE: Methodology for Engineering Systems of Software Agents,
- http://www.eurescom.de/~pub-deliverables/P900-series/P907/D1/P907D1.zip

[6] J. Ferber - Les Sytèmes Multi-Agents. Vers une Intelligence Collective - Eds InterEditions
1995

[7] M-P. Gleizes, V. Camps, P. Glize - A Theory of Emergent Computation Based on Coop-
erative Self-Organization for Adaptive Artificial Systems - 4th European Congress of Sys-
tems Science, Valencia, 1999

[8] C.M. Iglesias, M. Garijo & J. C. Gonzalez - A Survey of Agent-Oriented Methodologies -
In Intelligent Agents V, ATAL'98, LNAI 1555, Springer Verlag 1999.

[9] Jacobson, G. Booch & J. Rumbaugh – The Unified Software Development Process –
Addison-Wesley, 1999.

[10] D. Kinny, M. Georgeff, & A. Rao - A Methodology and Modeling Technique for Systems
of BDI Agents - In Proc. of the 7th European Workshop on MAAMAW (LNAI 1038), pp
56-71. Springer Verlag, Germany, 1996.

[11] Neptune : Reference IST Project n° 1999-20017 - Guidelines of a Process for the Use of
(27/07/01) http://neptune.irit.fr

[12] J. Odell, H.V. Parunak, & B. Bauer - Representing Agent Interaction Protocols in UML –
In Agent-Oriented Software Engineering (AOSE’01), Paolo Ciancarini and Michael
Wooldridge eds., Springer-Verlag, Berlin, pp. 121-140, 2001

[13] P. Robertson, R. Laddaga & H. Shrobe - Introduction: the First International Workshop
on Self-Adaptive Software - In Proceedings of the 1st IWSAS LNCS 1936, pp 1-10, 2000.

[14] Y. Shoham – Agent-Oriented Programming – in Artificial Intelligence, 60(1):51-92, 1993.
[15] G. Wagner - Agent-Oriented Analysis and Design of Organizational Information System.

In Proc. of the 4th IEEE Int. Baltic Workshop on Databases and Information Systems,
Vilnius, May 2000.

[16] M. Wooldridge & P. Ciancarini - Agent-Oriented Software Engineering: the State of the
Art - In P. Ciancarini & M. Wooldridg, ed., AOSE 01, Springer Verlag LNAI 1957, 2001.

[17] M. Wooldridge - On the Sources of Complexity in Agent Design - In Applied Artificial
Intelligence, 14(7), pp 623-644, 2000.

[18] M. Wooldridge, N. R. Jennings & D. Kinny - A Methodology for Agent-Oriented Analy-
sis and Design - In Proc. of the 3rd Int. Conf. on Autonomous Agents (Agents 99), pp 69-
76, Seattle, WA, May 1999.

[19] E. Yu - Agent Orientation as a Modeling Paradigm - Wirtschaftsinformatik. 43(2) April
2001. pp. 123-132.

[20] F. Zambonelli, N. R. Jennings, and M. Wooldridge - Organisational Abstractions for the
Analysis and Design of Multi-Agent Systems - In AOSE’00 LNCS, Springer-Verlag, 2000

