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Abstract. Many problems in medical imaging are stated in terms of pa-
rameter estimation. Given a proper parametric function local or global
optimization procedures are applied to compute the best fit between
the chosen model and observed measurements. The mathematical for-
malization of the tackled problem decides on the success of the final
algorithm. We introduce a framework for practitioners which is useful
for the definition of parameter estimation problems. The discussion of
these techniques is guided by a concrete application: all the theory is
motivated and studied considering the image warping task required for
3-D reconstruction based on linear projective mappings.

1 Introduction

A major goal of computer vision is to infer 3-D structure from image data.
Almost all reconstruction algorithms are stated as multiple view problems and
rely on camera models which are linearly projective [1]. In most cases the optical
acquisition device causes a nonlinear image distortion which is not sufficiently
modeled by a linear mapping in the projective space. CCD cameras, for instance,
cause radial and tangential distortions which are caused by improper assembly
and by the manufacturing process of lenses [1]. In X-ray systems image distortion
is basically caused by the earth magnetic field. The implied distortion function
is neither linear nor radial symmetric. In the presence of image distortion it
is important that the implementation of reconstruction algorithms provides a
reliable distortion correction module such that straight lines in 3-D are still
mapped to straight lines in the projection image.

Especially in medical applications there is a huge demand on the reliability of
algorithms. It is not sufficient to provide any solution, there is an obvious need to
implement the best possible algorithm with guaranteed success and predictable
runtime behavior. For that reason we will study the problem of image warping
in terms of robustness and efficency. This contribution provides important and
rather universal tools for the design and implementation of algorithms which fit
the high needs of medical applications. It is observed in the literature that many
ill-conditioned problems are insufficiently solved because the applied parametric
model and the input data are not carefully designed [1].



Fig. 1. Image warping: original image f (left), warped image f’' (right)

2 Principle of Image Warping

As illustrated in Fig. 1 the process of image warping maps an image to another
image. For each pixel (2',3') of the new image f' we have to compute the
corresponding point (x,y) of the original (distorted) image f. In a second step
the intensity value of f' at (z',3') has to be determined. Due to the fact that
the corresponding z and y are generally no grid points the required intensity
has to be computed by interpolating gray-levels of the local neighborhood. The
discussion of interpolation is omitted here. For further details we recommend
the survey paper [2]. In image processing the warp function is not defined by
users but given due to the physics of the acquisition device. The computation
of the warp function from observations is called calibration. Another interesting
problem is the selection of the direction of the above mapping: do we map pixels
from f' to f and run interpolation in f or vice versa? Discrete mathematics
tells us that you better sample the output function f'.

The design of an image warping algorithm for distortion correction requires
the solution of basically three sub-problems: 1. Model design: definition of a
proper (parametric) warp function. 2. Calibration: estimation of model param-
eters from observations; this also includes the optimal design of a calibration
pattern 3. Usage: application of the computed model.

3 Parametric Modeling of Warp Functions

The mapping between image coordinates of f' and f can be defined locally or
globally. We can either decompose the image into blocks and map these blocks
separately or warp the complete image by a single global function for each coor-
dinate. In both cases mappings can be approximated, for instance, by bivariate
polynomials of total degree d:
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Here by (z'), k > 0 span the considered polynomial space. The function Y (z', ")
to computed corresponding y-coordinates is defined analogous; its coefficients
are denoted by v; ; € IR. An obvious but less recommended base is b (z') = z'¥.



Stability. The best choice for by (z') are orthogonal polynomials where the coeffi-
cients are known to be mutually independent. Uncertainties in single coeflicients
do not affect other parameters. In terms of statistics this parameterization is
called stable. The covariance matrix of the estimated parameter vector is a di-
agonal matrix. Thus the covariance matrix serves as a witness for the stability
of a certain parameterization.

Fairness. Besides stability, fairness of the parameterization is another impor-
tant issue in defining regression models. The sensitivity of the algorithm’s out-
put should not depend on the chosen coordinate system. Therefore we call a
parameterization fair if any rigid transform of the space implies an orthogonal
transform of parameters [3]. The above introduced polynomial (1) is an exam-
ple for an unfair parameterization. The orientation of the coordinate system
affects the numerical sensitivity of the considered problem. Thus high variances
in estimates are not necessarily an intrinsic property of the problem.

Normalization. The concept of fairness does not cover the problem of scaling. It
is expected that scaling of data does not affect the final result of the parameter
estimation algorithm. From a theoretical point of view this assumption holds but
in practice we have to deal with image noise and limited precision arithmetics.
Therefore normalization of measurements is an important issue. Scaling of input
data often affects the conditioning of the problem to be solved and cannot be
neglected [1].

4 Calibration

The estimation of the coefficient vectors w = (u;,;)it+j<q¢ and v = (v; ;)itj<a Of
above introduced warp functions requires calibration.

4.1 Maximum Likelihood Estimation

We introduce a calibration pattern where the world coordinates of points are
precisely known. We denote these points by (z),,v.,),n = 1,2,...,N. Image
measurements are the warped points of the calibration pattern, i.e. (Zn,¥n),n =
1,2,..., N. The observed feature points and the knowledge of ideal calibration
points allow the estimation of parameters in (1). We just take those parame-
ters which minimize the deviation between measurements and primitives of the
calibration pattern. The estimates crucially depend on the choice of the cost
function. Without prior knowledge the best estimates of u and v result from
a maximum likelihood estimate [3]. Let us assume that the segmented feature
points (., y,) are isotropic and Gaussian random measures where variances are
equal to 1. If («),,9),n = 1,2,..., N denote the corresponding (ideal) coordi-
nates of the calibration pattern the unknown parameter vector u results from
the least square estimate:

N
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In this case the likelihood function and the associated optimization task define a
linear mapping from the parameter vector u to measurement vector 1m and vice
versa, i.e. m = A u. The components of the matrix A are nonlinear functions
of ideal points of the calibration pattern. If noisy measurements are considered
as random variables, the optimization problem defines a transform 7T of random
variables. The fairness of the chosen parameterization can be checked by con-
sidering the Jacobian Jq, of the transform 7. In case of a fair parameterization
the singular values of matrix Jq, will remain constant by rigid changes of co-
ordinates [3]. Any residual function implies a mapping 7 which can be linearly
approximated at its minimum using the implicit function theorem. Therefore
there is no need to have a closed form 7 to compute the Jacobian Jq.

4.2 Linear Estimators and Normalization

The mapping introduced in (1) is linear in the coefficients of the polynomial. As
mentioned above the least square estimate can be solved in closed form. The pa-
rameter vector is computed by: u = Afm, where A denotes the pseudo inverse
of A. Obviously the matrix A and its pseudo inverse depend on measurements
only.

The condition number k(A A) of the non-singular matrix A” A decides on
the sensitivity of the problem. The smaller the condition number the better. For
numerical robustness it is also important that the smallest singular value of this
matrix is well above machine precision. We make use of this observation to state
an algorithm which allows the automatic estimation of the best scaling factor in
terms of a minimum condition number. First we translate the points such that
their centroid is the origin of the coordinate system. Then the scaling of points
is computed by solving an one—dimensional optimization task. The condition
number k(AT A) can be implemented as a function of scaled calibration points.
Thus the optimal scale factor in terms of numerical robustness is given by:

5 = argmin k(AT A) . (3)

4.3 On the Design of Optimal Calibration Patterns

The introduced parameter estimation algorithm is a linear transform of input
data. If the covariance matrix of measurements is X' then the covariance of
estimates is AT 2(A")T. In many applications, however, the mapping from mea-
surements to parameter vectors is not closed form but defined by an optimization
problem. In [3] the authors introduce formulas to compute estimates of covari-
ance matrices even in the presence of constraints on parameters.

The covariance matrix of estimates allows the analysis of the sensitivity of
applied algorithm. We get concrete numbers which quantify both the statistical
dependencies as well as the accuracy of each estimate. Besides the applied cost
function and the selected parameterization, the sensitivity of estimated parame-
ters also depends on the spatial distribution of calibration points. It is intuitive
and obvious that the sampling density has to be higher, the more the sampled



function varies. Less variations require less sampling points. The design of a cal-
ibration pattern, which is optimal in the sense of low variances in estimates, is
guided by a combinatorial search algorithm. An appropriate cost function which
judges each configuration of calibration points is the determinant of the covari-
ance matrix X' of estimates. For a given number of calibration points we select
the configuration which leads to the lowest determinant:

(Zn, gn)n:l,Z,...,N = argmin(wmy") det(X) . (4)

5 Efficient Evaluation of Polynomials

After the polynomial mapping is computed efficient algorithms are required for
the evaluation of warp functions. In case of a bivariate polynomials we simply
consider the polynomial as a polynomial in z where the coefficients are polyno-
mials in y (see (1)). Both coefficients and the polynomial in z can be evaluated
in an efficient and robust manner by Horner’s rule. If we consider the problem of
image warping we notice that the coefficients of the coefficents of z are constant
for fixed y. Thus the polynomials in y are evaluated once for each image row.

Another restriction is that polynomials are evaluated for image grid points
only. Increments in z— and y—direction remain constant during the whole warp
process. Therefore we can apply the tabulating algorithm suggested in [4]. It
allows the efficient evaluation of a polynomial using arithmetic progression. After
initialization the evaluation of polynomials is reduced to a few additions only.
This idea can be applied to the polynomial in z and to its coefficients.

6 Summary

This paper considered the problem of image undistortion which is important
for many reconstruction algorithms. We described various facets of this prob-
lem from a computational point of view including the definition of cost func-
tions, the judgment of estimates and the design of optimal calibration patterns.
The introduced concepts of stability, fairness, and scaling are important for the
sensitivity analysis of parameter estimation algorithms and necessary to study
intrinsic properties.
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