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Abstract. This paper describes a new approach to the localization of
3D anatomical point landmarks in 3D tomographic images on the basis
of deformable models. It is demonstrated that compared to a purely
differential approach, the localization accuracy is improved and also the
number of false detections is reduced.

1 Introduction

We consider the problem of extracting 3D anatomical point landmarks from
3D tomographic images of the human head. The driving task is 3D image reg-
istration, which is fundamental to computer-assisted neurosurgery. Only a few
(semi-)automatic differential approaches for extracting 3D point landmarks exist
(e.g-, [1, 2, 3]). A common problem with such, rather local, approaches is their
sensitivity to noise. As a consequence, the localization accuracy is affected in a
negative way and false detections occur. This paper describes a new approach
to 3D landmark localization on the basis of deformable models, which takes into
account more global image information in comparison to differential approaches
and thus allows to alleviate the aforementioned problems. In medical image anal-
ysis, deformable models have been primarily used for object segmentation and
tracking as well as for image-atlas matching (see [4] for a survey). However, the
localization of 3D point landmarks on the basis of deformable models has not
been considered so far.

Exemplarily, we focus on two different types of 3D point landmarks, viz.,
salient surface loci (curvature extrema) of tip- and saddle-like structures. Ex-
amples of such landmarks in the case of the human head are the tips of the
ventricular horns (see Fig. 1) or the saddle points at the zygomatic bones. To
describe such structures, we utilize 3D surface models. In the literature, a wide
variety of surface models has been used (see, e.g., [4]). Note, however, that in
contrast to earlier work on deformable models, we are here interested in the
accurate localization of salient surface loci. Central to an efficient solution of
this specific problem is that the model surface exhibits a unique point whose
position can be directly computed from the model parameters. Addressing this
problem, we use quadric surfaces as 3D shape prototypes, which additionally
undergo global deformations such as to enlarge the range of shapes. The prob-
lem of landmark localization is thus reduced to the problem of finding optimal
parameter values for describing the structure at hand in the 3D image data.
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2 Geometric Models of Tip- and Saddle-Like Structures

Tip-like structures. As 3D shape prototype, we consider a (half-)ellipsoid. To
cope with bended structures such as the ventricular horns, the prototype under-
goes a bending deformation B along the z-axis ([6]), B(x) = (z + 6 2% cosv,y +
§ 2%sinw, )T, where § determines the strength and v the direction of bending.
Finally, to transform from object-centered coordinates to image coordinates, we
apply a rigid transformation R(x) = Rx + t, where t = (X,Y, Z)T denotes the
translation vector and R the rotation matrix depending on the rotation angles
a, 8,7. The parametric form of our model thus reads

Z4ip(0, ) = R o Bo (ay cosf cos ¢, az cos f sin ¢, az sin )T, (1)

where 0 <0 < 7/2 and —m < ¢ < 7 are the latitude and longitude angle parame-
ters, resp., and a1, a2, a3 > 0 are scaling parameters. Hence, the model is fully de-
scribed by the parameter vector pyip = (X, Y, Z, a, 8,7, a1, a2, a3, 6, v). The land-
mark position of our model, i.e., the position of the curvature extremum of the
deformed ellipsoid, is given by x; = @p(7/2,0) = R(J a? cosv,§ a?sinv,a3) T+t
(see Fig. 2 (left) for an example of a bended tip-like structure).
Saddle-like structures. Here, a (half-)hyperboloid of one sheet serves as 3D shape

prototype. In addition, the prototype is rotated and translated:

Zsaadie (8, ¢) = R o (a1 cos ¢/ cos b, az sin ¢/ cos b, az tan )T, (2)
where [§] < 7/2 and 0 < ¢ < «. In this case, the model is fully described

by pPsaadaie = (X, Y, Z,a, 8,7, a1, az2,a3). The landmark position is here given by
X] = @saddle(0,7/2) = R(0, a2,0)T + t (see Fig. 2 (right) for an example).
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Fig. 1. Ventricular system of Fig. 2. Geometric models based on quadric sur-
the human brain (from [5]). faces as 3D shape prototypes.

3 Fitting the Geometric Models to the 3D Image Data

Model fitting is formulated as an optimization problem where a suitable fitting
measure is optimized w.r.t. the model parameters. Here, we consider an edge-
based fitting measure. Our fitting measure is a 3D generalization of the 2D fitting
measure in [7] and exploits (a) the similarity between the directions of the in-
tensity gradient and the normals of the model surface and (b) the strength of
the intensity variations (a similar 3D fitting measure was used in [8]).

During fitting, we consider the contribution of the intensity gradient in the
direction of the normal of the model surface:



O0xz(0,¢;p) _ Ox(0,¢;p)
Mg (p) = + \Y 9,9;p)),

where g is the intensity function, & denotes the parametric form of the respective
geometric model depending on 6, ¢, and the model parameter vector p, and
< +,- > is the inner product. The sign + in (3) depends on the appearance of
the structure at hand in the image: In the case of a dark (bright) structure
compared to the surrounding, the sign is positive (negative). We minimize the
fitting measure in (3) w.r.t. p by applying the conjugate gradient method.
Initial values for the model parameters are determined by a differential ap-
proach. For tip-like structures, we consider an ellipsoid as approximation. In the
case of saddle-like structures, we restricted ourselves to an undeformed hyper-
boloid of one sheet. Thus, for both models from Sect. 2, we have to find initial
values for nine parameters (X,Y, Z, a, 8,7, a1,az2,a3). An initial estimate X; of
the landmark position is obtained by a semi-automatic differential approach
([2, 3]). To initialize the rotation angles «, 3,+, we utilize the direction of the
intensity gradient (estimate of the normal) as well as the principal directions
of the isointensity surface at X; (see, e.g., [9, 1] for isointensity surface curva-
ture computation). The scaling parameters a;, as, a3 are initialized based on the
principal curvatures k1, ko of the isointensity surface at %;. Note, however, that
we have only two principal curvatures, while we have three scaling parameters.
To cope with this problem, we here initialize one scaling parameter manually.

> d¢df — min., (3)

4 Experimental Results and Discussion

In this section, we present experimental results of applying our new approach to
different anatomical landmarks of the human head in 3D tomographic images.

Tip-like structures. We considered the tips of the frontal and occipital ven-
tricular horns in a 3D T1-weighted MR image. Fig. 3 exemplarily shows the
results obtained for the left frontal ventricular horn. The initialization result is
depicted in Fig. 3a. Here, the translation parameters X,Y, Z, the rotation an-
gles a, 3,7, and the scaling parameters a;,as were automatically determined
(see Sect. 3); only the scaling parameter as was manually initialized. Given the
relatively large number of parameters, model fitting was then performed in two
steps for reasons of robustness: To achieve a coarse adaption, we first fitted only
the six parameters of the rigid transformation, while the other parameters were
kept constant. In the second step, all parameters (translation, rotation, scaling,
and bending) were considered during optimization. To diminish the influence
of neighboring structures, model fitting was restricted to a spherical region-of-
interest (ROI) centered at the estimated landmark position. The fitting result
for the left frontal horn is shown in Fig. 3b, while Fig. 3c depicts the localized
landmark position, which was directly obtained from the fitting result. For the
other landmarks, we obtained similar results.

Saddle-like structures. Here, we considered the saddle points at the zygo-
matic bones in the same 3D T1-weighted MR image and in addition in a 3D
CT image (same patient). In both modalities, we obtained reasonable initial
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(a) Initialization (b) Fitting result

(c) Localized landmark position

Fig. 3. Localization of the tip of the left frontal ventricular horn in a 3D T1-weighted
MR image. (a) and (b) Axial image sections at the ROI center (the considered spher-
ical ROI for model fitting is highlighted in (b). (¢) Orthogonal image sections at the
localized landmark position obtained from the fitting results.

values for the model parameters. Only the scaling parameters were manually
coarsely initialized. In contrast to the experiments using the ventricular horns,
we here performed model fitting in a single step in which all parameters were
simultaneously optimized. Fig. 4 shows the localized landmark position for the
saddle point at the left zygomatic bone in MR and CT. Similar results were
obtained for the saddle point at the right zygomatic bone.

Localization accuracy. To assess the localization accuracy of our new ap-
proach, we use as ground truth positions that were manually specified in the
3D MR image in agreement with up to four persons. For the six landmarks
in the MR image, the mean Euclidean distance from the positions localized
by our new approach to the ground truth positions was €pew = 1.22mm. In
comparison, a purely differential approach ([2, 3]), which was here also used to
determine initial estimates of the landmark positions, yielded a mean error of
Edifferential = 2-11mm. Thus, the localization accuracy was improved by 0.89mm.

False detections. One problem with differential approaches is that often more
than one landmark candidate is detected, i.e., we have to ensure that a correct
candidate is selected for model initialization. To this end, we studied the suit-
ability of using the fitting results to automatically identify false detections. For
each landmark from above, we used all detected candidates to determine a set
of initial values for the model parameters: For the left and right frontal ventric-
ular horn as well as for the right occipital horn in the MR image we obtained
two candidates, while for the left (right) zygomatic bone in the MR image we
obtained three (five) candidates. In the case of the other landmarks, only one



Fig. 4. Localization of the saddle point at the left zygom. bone in a 3D T1-weighted
MR image (top) and a 3D CT image (bottom). Orthogonal image sections at the
localized landmark position obtained from the fitting results.

correct candidate was detected. We then compared the fitting results obtained
for each candidate based on the value of the fitting measure (3) divided by the
surface area (the normalization was done to avoid a bias due to the surface area).
We found that in all cases but one, the selection of a correct candidate actually
resulted in the best fitting result. For the right occipital horn, it turned out that
the detected two candidates are both correct in the sense that they refer to two
prominent anatomical loci at the tip of the occipital horn.

In summary, it turned out that compared to a purely differential approach to
landmark extraction, the combination of our new approach on the basis of de-
formable models with a differential approach (for model parameter initialization)
improves both the localization accuracy and the detection performance.
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