
TheaterLoc: A Case Study In Building An
Information Integration Application

Greg Barish, Craig A. Knoblock, Yi-Shin Chen, Steven Minton,
Andrew Philpot, Cyrus Shahabi

Information Sciences Institute,
Integrated Media Systems Center and

Department of Computer Science
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
{barish, knoblock, minton, philpot}@isi.edu

{yishinc, shahabi}@cs.usc.edu

While there has been much written about various information integration technologies, there has been little
said regarding how to combine these technologies together to build an entire application. In this paper, we
describe the design and implementation of TheaterLoc, an information integration application that allows
users to retrieve information about theaters and restaurants for cities in the Los Angeles area, including an
interactive map depicting their relative locations and video trailers of the movies playing at the various area
theaters.  The data retrieved by TheaterLoc comes from five distinct heterogeneous and distributed sources.
The enabling technology used to achieve the integration includes: the Ariadne information mediator,
wrappers for each of the web-based data sources, and a video server to stream the movie trailers.  We focus
in detail on the mediator technologies, such as data modeling, source axiom compilation, and query
planning.  We also describe how the wrappers present an  interface for querying data on web sites, aiding in
information retrieval used during data integration. Finally, we discuss some of the major integration
problems we encountered, as well as our plans to deal with them.

1 Introduction

There is a wealth of interesting data sources and applications available on the World Wide Web, but it is
difficult to do much with the information except look at it or build a specific application to process the data
available.  Writing separate applications each time is a time-consuming and redundant task.  We have
developed a system called Ariadne1 [Knoblock et al. 1998] that makes it possible to rapidly construct an
information agent that can integrate data sources that were not originally designed to work together.  The
resulting agent dynamically performs the integration in order to minimize the problems associated with
storing and maintaining data.  Ariadne includes tools for constructing wrappers that make it possible to
query web sources as if they were databases and the mediator technology required to dynamically and
efficiently answer queries using these sources.

We claim that Ariadne makes it possible to rapidly build new information agents and in this paper we
describe exactly what is involved in putting together an information integration application.  This paper
provides a detailed behind-the-scenes look at the pieces that comprise one of the recent applications we
built.  This application, which we call TheaterLoc, integrates data on movie theaters and restaurants,
allowing the user to view the information on a map, look up restaurant reviews, movie showtimes, and
view trailers of films.

There has already been substantial work on information integration [Weiderhold 1996], including those
projects which focus on applying that technology to the Web, such as the Information Manifold [Levy et al.
1996], Occam [Kwok and Weld 1996], Infomaster [Genesereth et al. 1997], and InfoSleuth [Bayardo Jr. et
al. 1997], as well as work done specifically about information extraction [Hammer et al. 1997; Doorenbos
et al. 1997; Kushmerick 1997] . But what is noticeably absent from the literature is a study on what it takes
to put together an entire application using the various integration technologies.  To that end, we describe
the details of how TheaterLoc works and what our plans are for extending the application.

                                                          
1 In Greek mythology, Ariadne gave Theseus the thread with which to find his way out of the Minotaur’s
labyrinth.



2

The next section describes what the application does from the user’s point of view.  Then in Section 3, we
describe how it works, including the modeling of the domain, the axioms for integrating the sources, the
planning for efficiently processing sources, and the wrappers for extracting the data from the web pages.
In section 4, we identify some of the main challenges and how we addressed these challenges or are
planning to address them.  Finally, we conclude with a discussion of how this application compares to what
is available from other web sites, describe another application that we are developing, and identify
additional research issues that we will be exploring.

2 The TheaterLoc Application

2.1 Overview

TheaterLoc allows users to retrieve information about restaurants and/or movie theaters in cities in and
around Los Angeles county. The application is accessed via the Web using any Web browser.2 As shown in
Figure 2.1, users choose whether they want to gather information about restaurants or theaters (or both) and
then choose the city in which they are interested.  The system returns information about the theaters and
restaurants in that city, as well as a custom, interactive map identifying their relative locations within that
city, as illustrated in Figure 2.2.

Users can then click on any of these plotted points to be taken to a web page containing further details
about that particular place.  For example, when a restaurant is chosen, as shown in Figure 2.3, users are
taken to its corresponding CuisineNet web page, which contains reviews, pricing information, and ratings.
Figure 2.4 shows that, if a theater is chosen from the map, users are presented with a listing of the current
movies playing at that theater, along with their showtimes and links to video previews.  Clicking on the
preview link initiates a video streaming session in which the trailer for the movie is played.

The information integrated by TheaterLoc comes from five distinct online sources.  Restaurant information
is gathered from CuisineNet, theater and movie showtime information from Yahoo Movies, and the
previews come from Hollywood.com.  Construction of the interactive map is facilitated by two sources: the
E-TAK geocoder (to geocode all addresses for plotting) and the US Census Tiger Map Server.

The TheaterLoc application is effective because it shields the user from having to go to these sites
separately, navigate through different user interfaces, and integrate the data manually.  Instead, clients are
presented with a single, cohesive application which seamlessly integrates the useful data from these sources
and automatically correlates them as necessary.

                                                          
2 To watch the video previews, users must also have installed the Microsoft Media Player plug-in

Figure 2.1: TheaterLoc user interface



3

Figure 2.2: List of movies and restaurants, along with interactive map

Figure 2.3: Detail page for restaurant



4

2.2 System Architecture

TheaterLoc is a client/server application, where the server side is composed of five major pieces: a web
server, an information mediator, a set of wrappers to access data sources, and a video streaming server.  For
the purposes of this paper, we will narrow our focus to the details of the mediator and wrappers, since they
are the centerpiece of the integration effort.

The system architecture is shown in Figure 2.5.  When a client issues a query though the web interface, the
HTTP request is processed by the web server, and a corresponding query is sent to Ariadne to be resolved.
The mediator, in turn, constructs a plan regarding which sources should be queried and how the data
retrieved should be integrated.  This plan also contains information about how to order the steps of
information retrieval (since there may be dependencies), which steps can be executed in parallel, and what
other data manipulation functions (such as joins or projections) need to be done for purposes of integration.

Client
Web Browser

Ariadne
Information

Mediator

NetShow
 Server

NetShow
 Plug-In

Theaters
Wrapper

Showtimes
Wrapper

Restaurant
Wrapper

Trailer
Wrapper

Map
Wrapper

Geocoder
Wrapper

NetShow
Streaming
Protocol

HTTP

Figure 2.4: Theater/Movie detail page, with showtimes and video preview

Figure 2.5: TheaterLoc System Architecture



5

The mediator relies on both functional sources and data sources in order to get the information it will
integrate. Many of the data sources typically accessed by Ariadne applications are web sites.  Access to the
data on these sites is accomplished through communication with data source wrappers,  which represent a
standard, flexible query interface to a set of logically related web pages.  Many web pages are semi-
structured data sources, in that they contain useful information, organized in a predictable manner, which
can be extracted automatically.  Wrappers are used to parse the data from these web pages, essentially
providing a database-like interface to the data contained on those pages.  They allow the mediator to
interrogate web sites for information in a standard and structured manner, specifically, a subset of the SQL
language. The TheaterLoc wrappers and the sites they interface with are listed in Table 2.1

Wrapper Name Web Source HTTP Address

Restaurant CuisineNet http://www.cuisinenet.com

Theater, Showtimes Yahoo Movies http://movies.yahoo.com

Geocoder E-TAK Geocoder http://www.geocode.com/eagle.html-ssi

Tiger USGS Tiger Map Service http://tiger.census.gov

Trailer Local Web Site http://imsc.usc.edu/

2.3 Example Query

To illustrate the details of integration within the system, consider the following example.  Suppose a user
wants to get information about the restaurants and theaters in Costa Mesa.  After the user submits the query
form for processing, the first thing that happens is that the web server hands off the contents of the request
to a CGI/bin-type application, so that a corresponding query, based on the web page form values, can be
sent to the information mediator.

Once this query is received, the mediator plans its solution. The resulting plan consists of several
subqueries to various functional and data sources that the mediator knows about, so that the desired
information can be efficiently retrieved and integrated.  Generally, the plans for this initial TheaterLoc
query consist of the following two abstract steps: retrieving information about the various restaurants and
theaters in Costa Mesa, and constructing a map showing where in that city they are located.

The detailed plan needed to accomplish these two tasks includes a few additional steps, based on the
functional and data sources available. Recall that it is not possible to simply get all of this information from
a single source.  The mediator must reason about what data the various sources can offer and then construct
a plan which retrieves the desired information based on the features, limitations, and dependencies between
the sources.  These detailed steps are described below.

2.3.1 Retrieving Theater and Restaurant Demographics

For our example query, since the user has chosen to get information on all theaters and restaurants in Costa
Mesa, the planner will initially determine that it needs to query the Restaurant and Theater wrappers to get
demographic information (names, addresses, and URLs) for both types of establishments.  In contrast, if the
user had requested only to get information about the theaters in Costa Mesa, the mediator would realize that
there would be no need to query the Restaurant wrapper, since the CuisineNet source only provides
information about restaurants.

It is interesting to note the URL attribute associated with each restaurant and theater.  For restaurants, that
URL simply points to a specific CuisineNet page which describes the location in more detail (reviews,
menus, etc).  However, in the case of theaters, the URL actually represents an HTTP encoded form of

Table 2.1: TheaterLoc Wrappers



6

another Ariadne query, to request detailed information about the theater.  This query and its associated plan
are described later in this example.

2.3.2 Retrieving The Interacti ve Map

The next step in the plan for our Costa Mesa query involves contacting the Geocoder wrapper to gather
geographic coordinate information for each theater and restaurant.  This data is needed for the step which
follows, which is to construct an interactive map depicting the locations of  these places.  The source which
provides the map, the Tiger wrapper, is actually a functional source which takes, as input, a list of places to
be plotted, along corresponding hyperlink references.  The Tiger wrapper then contacts the US Census
Tiger Map Server to generate a custom map for the points plotted (the map is correctly sized, roughly
double the maximum distance between the plotted points).

Based on the map returned, the Tiger wrapper also calculates how the geographic coordinates should be
translated to Cartesian coordinates for each establishment, plots a map point, and associates a hyperlink
with that point.  This association is done by way of an HTML image-map, which allow hypertext links to
be embedded in different regions of a single image. In short, the graphical points on the map shown in
Figure 2.4 are linked to other web pages: in particular, to the detailed pages about either the particular
restaurant or theater to which the point refers.

Now that the demographic and map information has been gathered, both are returned to the user on an
HTML page, as shown in Figure 2.2  Since the URL attribute is included both in the summary table and as
an embedded hyperlink in the map, users can choose to explore more detail about either a restaurant or
theater.  If they choose a restaurant, such as “Henry and Harry’s Goat Hill Tavern,” they are taken to the
CuisineNet page for that restaurant (Figure 2.3).  If, on the other hand, they choose the URL attribute for a
theater, another Ariadne query is invoked to collect movie showtime and video trailers for those movies
(Figure 2.4).  Again, the web server takes the responsibility of translating a web-based request into a
domain-level query.

2.3.3 Retrieving Movie Showt ime and Previews

Once received by Ariadne, the query for theater details contains the name of the theater which is selected.
In our example, we have selected the Edwards Pointe Metro Cinema, listed in Figure 2.4.  The plan that the
mediator constructs to solve this query consists of two steps: (a) interrogating the Yahoo Movies site via
the Showtimes wrapper for information on the showtimes of movies playing at that theater and (b) for each
movie, querying the Trailer wrapper to locate the URL for the video trailer, if any, associated with that
movie.  The combined information is joined into a single relation and subsequently returned to the user.
This relation is shown as an HTML table, in Figure 2.4.

If the user chooses the link for a movie trailer, a request is made to a video server, which then initiates a
video streaming session. At this point, the user’s video client is activated and the trailer can be viewed.
Figure 2.4 shows the viewing of the Prince Of Egypt trailer.

3 Behind the Scenes at  TheaterLoc

We now take a detailed look at the inner workings of TheaterLoc, focusing primarily on the Ariadne
mediator and wrapper technologies.

3.1 The Ariadne Information Mediator

3.1.1 Data Modeling

In Ariadne, relationships between data are expressed through the domain model for the application.  The
model contains information about classes, their attributes, and their relationship to other classes.   For
example, in TheaterLoc, Restaurant is a class.  It has several attributes, including cuisine-type.  It is also
related to other classes, such as Theater.  Classes can be mapped to zero or more actual data or functional



7

sources.  For example, an abstract class  may exist only for purposes of unifying related classes, and not be
related to any direct sources.  Its instantiation is meaningless, but it is useful for grouping like classes and
implementing inheritance at the modeling level.  On the other hand, a class may actually be represented by
two sources, each of which contributes unique or duplicate attributes to a single class.

The domain model provides a unifying ontology for describing the contents of the sources. The model
supports both functional sources and data sources.  The former essentially has a set of input and output
attributes: when given the required input attributes, functional sources perform some computation and
produce the output attributes.  Data sources, on the other hand, simply contain a relation to be returned.
There are often instances when data sources require some input in order to return a relation (for Web sites,
this is the case when executing an HTTP POST request), so they can be very similar to functional sources.
However, in Ariadne, functional sources are typically local and they always involve computation
performed locally.  Data sources are either local or remote and, if they do involve computation, that
computation is performed remotely.

The TheaterLoc domain model is shown in Figure 3.1. This model shows the domain level classes of Map,
Place, Movie, Restaurant, and Theater (all are related to the Root class, which unifies the system).  The
sources associated with each class are shown as gray cylinders or cubes, near the class.  The cylinders
indicate data sources, the cubes indicate functional sources.

$city-name
place-name
street
city
state
theater-url

$theater-url
raw-movie-name
showtime

$movie-name
trailer-url

$map-points
map-url

$city
$state
city-state

$street
$city
$state
longitude
latitdude

$raw-movie-name
movie-name

$place-name
$theater-url
movie-query-url

$city
cuisine
phone
price

$UWLFOH�)Q

5HVWDXUDQW 048�)Q

7KHDWHU

*HRFRGHU

7LJHU6KRZWLPHV

7UDLOHU

&RQFDW�)Q

URRW

UHVWDXUDQW

PRYLH PDS

SODFH

WKHDWHU

functional
source

data source concept

Also shown for each source is a list of the attributes provided by that source, as well as any binding
constraints [Kwok and Weld, 1996] associated with the source. The directed arc edge from Restaurant to
Theater indicates a covering, referring to the fact that the only types of Place in TheaterLoc are either
restaurants or theaters.  Since the Restaurant and Theater classes are sub-classes of Place, they naturally
inherit attributes of their parent class, namely: street, city, state, city-state, latitude, and longitude.

One functional source listed in the model is the Article-Fn source, which takes as input an attribute called
raw-movie-name and then returns an attribute called movie-name.  This purpose of this source is to

Figure 3.1: TheaterLoc domain model



8

normalize the ordering of the words of a movie title, so that semantic equivalence can be detected with
another source (we will describe this issue in more detail in Section 4).  Specifically, this source is used to
move any grammatical article which might appear at the end of a movie title to the front of the title.  For
example, the raw-movie-name might be “Bug’s Life, A” and the movie-name returned would be “A Bug’s
Life”.

As an example of a data source, consider the Geocoder.  Although this is a data source, it also has a notion
of required input attributes – street, city, and state – in order to retrieve latitude and longitude.  This kind of
constraint is an example of a source containing a binding constraint.

Since it is the central part of the system which plans and gathers data from the various sources, the
mediator also serves as the data integration mechanism. Since the individual sources have no knowledge of
each other (or of the domain model), the mediator naturally assumes this role. Thus, filtering tasks, such as
the joining data based on various constraints are handled at this level. In the example Costa Mesa query,
described in Section 2.2, joins are done by the mediator between theater/restaurant demographics and the
corresponding geographic coordinate information for those places.

3.1.2 Query Planning

Planning in Ariadne consists of two major steps: an initial axiom compilation phase and then the runtime
planning phase.  The first step is executed once, when the application is first initialized.  The second step is
executed dynamically, on a per query basis.

3.1.2.1 Axiom Compilation

The reasoning done by the mediator about the domain model leverages the results of an initial domain
axiom compilation step [Ambite et al. 1998], which generates rules about what source combinations can be
used to solve various domain queries (and subqueries).  Specifically, axiom compilation is based on
applying a set of inference rules to construct a lattice describing how various combinations of data modeled
at the domain level can be retrieved given the available functional and data sources.

For example, consider the axioms for the TheaterLoc Restaurant domain class, shown in Figure 3.2.
Notice the second axiom, which has a head declaring that various attributes of restaurant (such as cuisine
type and latitude) can be retrieved by combining the source level data sources of CuisineNet and Geocoder
(the body of the axiom).  Essentially, axioms represent how to map domain level terms onto one or more
source level terms.

As shown, the axioms depict both domain and source level classes.  The “$” symbol in the source level
description for the Geocoder indicate that the latitude and longitude attributes can be returned by
providing city, state and street.  Intuitively, this makes sense: one cannot geocode something in
geographic coordinates without knowing its physical address.  This dependency is referred to as an axiom

restaurant(?$city _ ?cuisine _ _ _ _ ?phone ?place-name ?place-type ?price ?state ?street ?url _)
<-> cuisinenet(?street ?$city ?place_type ?cuisine ?url ?place-name ?phone ?price ?state)

restaurant(?$city _ ?cuisine _ ?latitude _ ?longitude ?phone ?place-name ?place-type ?price ?state ?street ?url _)
<-> cuisinenet(?street ?$city ?place_type ?cuisine ?url ?place-name ?phone ?price ?state) and
      geocoder(?$city ?latitude ?longitude ?$state ?$street)

restaurant(?$city ?city_state ?cuisine _ ?latitude _ ?longitude ?phone ?place-name ?place-type ?state ?street ?url _)
<-> concatfn(?$city ?city_state ?$state) and
      cuisinenet(?street ?$city ?place-type ?cuisine ?url ?place-name ?phone ?state) and
      geocoder(?$city ?latitude ?longitude ?$state ?$street)

Figure 3.2: Axioms for the Restaurant class



9

binding pattern, and it is one of the source-level dependencies that the planner must negotiate when
resolving a domain level query.

Another interesting aspect of the Restaurant axioms involves a relationship to one of the functional
sources (Concat-Fn).  The third axiom declares that the city-state attribute can be generated by the Concat-
Fn source, as long as the city and state attributes are supplied.  Data sources with binding patterns appear
similar to functional sources, at the interface level, but they are usually different at the implementation
level.  Functional sources usually perform local computation based on input and derive original data based
on that input.  In contrast, data sources with binding patterns typically use the input information as a means
to either perform remote computation or as a means to filter out a logical subset of data from a much larger
set.

Axiom compilation significantly reduces the run time execution of the system.  The planner no longer
needs to perform a costly search to identify the combinations of sources which can fulfill the needs of a
particular domain query or subquery.

3.1.2.2 Plan Generation and Optimization

As mentioned earlier, Ariadne reasons about the domain model and source descriptions in order to develop
an efficient plan for retrieving and integrating the data.  The planning method used to accomplish this is
called Planning-by-Rewriting (PBR) [Ambite and Knoblock 1997].  Under PBR, an initial, sub-optimal
plan is quickly generated and then iteratively improved by applying a series of rewriting rules. Rewriting
relies on local search algorithms that can alter both the sources used to resolve portions of a query as well
as the ordering of operations performed by the mediator during information integration.

The resulting plans produced by PBR can significantly optimize and simplify the linear portions of the
plan, as well as exploiting opportunities for parallelism between tasks, where possible. For example, the
planning associated with resolving the query about restaurants and theaters in Costa Mesa would identify
that the collection of demographic information and the geocoding of that information was a necessarily
serial sequence, whereas the collection of the demographic data from the Theater wrapper and the
collection of data from the Restaurant Wrapper were independent plan steps that could be parallelized.

An example plan to locate the theaters in Costa Mesa, which represents a sub-plan of the original example
presented in Section 2, is shown in Figure 3.3.  Generally, what is illustrated here is that a list of theaters is
being retrieved from the Theaters wrapper, geocoded and the relevant attributes returned as output.  In
addition, for each theater, a movie-query-URL (which is the basis for the movie-showtimes query) is
derived.  In looking at the figure, we can identify a series of plan operators associated with these general
tasks.   For example, notice that there is a retrieval done for Theaters, the result used as the basis for
geocoding (Geocoder retrieve step), and the subsequent results are joined along <street, city, state>.  Later,
there is a join done between this information and the movie-query-URL information, along the condition
<place-name>.  Finally, the output contains the attributes of the class, provided by the integrated sources.

Retrieve

FROM: MovieQueryURL-fn
DATA: $place-name, $theater-
url, movie-query-url

Retrieve

FROM: Geocoder
DATA: $street,
$city, $state,
latitude, longitude

Project

street, city,
state

Project

place-name,
theater-url

Ordered-Join

street = street,
city = city,
state = state

Retrieve

FROM: Theater
DATA:  place-name,
street, $city ,$state,
theater-url

Ordered-Join

place-name =
place-name

Output

place-name,
street,
city,
state,
theater-url,
movie-query-url,
latitude,
longitude

Figure 3.3: Fragment of plan to extract restaurant demographics and geographic coordinates



10

3.2 Automatic Wrapper-bas ed Information Extraction

Wrappers, as described previously, provide a generic mechanism by which a web site can be queried like a
traditional database, in a subset of the SQL syntax. In TheaterLoc, for example, when querying the list of
restaurants from CuisineNet for Westwood, the SQL query:

select name, link, address from CuisineNet where city=’Westwood’

is issued to the Restaurant wrapper by the mediator.  The wrappers work by using a page model to describe
the location and type of web page(s), an embedded catalog to define the hierarchical relationship between
data on a page, and a set of extraction rules describing how to parse data from that page [Muslea et al.
1999].

The page model describes how the pages should be contacted in order to prepare for data extraction.  For
example, the E-TAK Geocoding site consists of an HTML form which takes address information as input
and returns the geographic coordinates for that address.  Thus, the extraction of those coordinates is
contingent on submitting the form (an HTTP POST request).  The automatic entering of data onto the form
and subsequent POST request are described in the page model.

An embedded catalog is used to model the hierarchical relationships between the attributes on a page.  For
example, the Showtimes wrapper contains a two-level embedded catalog which describes the fact that each
theater page contains a list of one or more movies.   The embedded catalog is used as a basis for how to
parse a given web page.  Multiple levels in the catalog typically indicate list-like structures on pages, so
that nested lists of information can be extracted in a structured manner.

Finally, the extraction rules describe how a page should be split into a hierarchy of components, and where
the data is located within those components.  Whereas the embedded catalog describes the general tree-like
structure of a page, the extraction rules define how to locate the nodes and leaves of that tree, the latter
being the actual data to be extracted.  Rules are expressed in a regular-expression like syntax, and are based
on identifying landmarks near where the matching expression will appear.

Generation of the page model, embedded catalog, and extraction rules is accomplished through training the
system via a graphical user interface.  Application developers use the GUI to choose web pages they want
to extract data from, as well as where the various parts of data on that page are located – they actually point
and click to indicate this information.  Using induction learning, a system called STALKER [Muslea et al.
1998] generates the rules associated with the user-defined catalog and model.

As an example of how wrappers extract data from a semi-structured source, such as a web page, consider
the TheaterLoc Showtimes wrapper.  As shown in Figure 3.4, the Yahoo Movies web page for the “AMC
Santa Monica 7” theater shows a list of movies and their showtimes.  Obviously, there are some natural
structures and patterns associated with the data for that page.  Wrappers take advantage of this semi-
structure to perform information extraction.  For example, the figure shows that on each page there is a
notion of a movielist, which is composed of a list of movies.



11

PRYLHOLVW

PRYLH

Figure 3.5 shows the actual page model file for the Showtimes wrapper. Notice that a binding pattern
relationship exists: a URL for a theater must be supplied in order to receive information about movies and
showtimes.  Figure 3.6 shows the hierarchical embedded catalog for the same wrapper.  The
movielist/movie relationship, as described above, is captured here.  Finally, Figure 3.7 presents the
extraction rules.  These rules describe how to locate relevant data on a web page.  Notice that they are
somewhat related to the embedded catalog, in the sense that hierarchical relationships must have special
rules which show how to locate multiple child instances.  For example,  the notion that movielist contains
one or more movies requires that the extraction rules specify not only where the movielist can be found on
the page, but also how to iterate through it, so that multiple instances of its children can be identified.

It is also interesting to note the two-level embedded catalog which mirrors the list-like structure of the
actual  web page (Figure 3.7), where each theater contains a list of movies, and each movie has a set of
showtimes.  Notice that we also could have extended the catalog to a third-level, to capture the list of
showtimes, instead of just the showtimes as one large string.  But, that sort of enumeration would not be
useful at the application level (we do not need to extract the individual showtimes), so we used two levels.

sourcetype PAGE
sourceURL ?URL
attributes:
   MOVIE:string,
   SHOWTIMES:string
sourcetype PAGE
sourceURL ?URL
attributes:
        MOVIE:string,
        SHOWTIMES:string,
        URL:url

 Figure 3.5: Page model file for the Showtimes wrapper

g ROOT MOVIELIST
e MOVIELIST MOVIE SHOWTIMES

 Figure 3.6: Embedded catalog for the Showtimes wrapper

Figure 3.4: the Yahoo! Movies page showing theater name and showtimes



12

4 TheaterLoc Challenges and Extensions

Like most information integration efforts, building the TheaterLoc application was not without challenges.
Bringing together information from distributed, heterogeneous sources often requires some extra “glue” to
address outstanding integration problems.  One of our ongoing goals with Ariadne and its related
technologies is to reduce the amount of glue necessary to rapidly build information integration applications.

In this section, we describe the various problems we encountered while building TheaterLoc.  These
dilemmas are characteristic of the problems frequently associated with designing and implementing
information integration applications. We have active areas of research focusing on addressing many of
these issues.

4.1 Resolving Data Inconsistencies

One ongoing issue related to data source integration has to do with finding a way to normalize semantically
identical instances of data between two or more sources.  In TheaterLoc, we encountered a problem where
the Yahoo Movies site contained spelling and punctuation for movies which differed from that at
Hollywood.com, where we located corresponding trailers.

For example, Yahoo Movies listed the movie “Bug’s Life, A” whereas Hollywood.com listed that movie as
“A Bugs Life”.  At first glance, this does not seem like a difficult problem.  One could write a function,
such as move-the-article-to-the-front, to do the conversion – and we did, in this case.  However, different
types of data require different conversion rules or functions, in order to aid in the detection of semantic
equivalence.  In short, the same article-moving trick would not be sufficient when trying to detect, for
example, that “Ten Things I Hate About You” and “10 Things I Hate About You” refer to the same data
item.  Detecting semantic equivalence is a common requirement in information integration, since integrated
sources often express the same data differently.

Closely related to this issue is the idea that, when looking at domain classes, certain attributes are more
useful as a basis for distinction than others.  For example, consider two Restaurant wrappers (one uses the
Zagats survey, the other uses Fodors).  The first might list a restaurant in Hollywood (neighborhood of Los

MOVIELIST item
 Begin_Rule
   SkipTo(Movies) SkipTo(and) SkipTo(Showtimes) SkipTo(<A HRef=)
 End_Rule  _BE_
   SkipTo(module movies) SkipTo(</table>) SkipTo(&nbsp;) SkipTo(&nbsp;)
_EOI_

MOVIELIST iter
 Begin_Rule
   SkipTo(<A HRef=)
 End_Rule  _FE_
   SkipTo(<tr>) SkipTo(<td>) SkipTo(<hr)
_EOI_

MOVIE item
 Begin_Rule
   SkipTo(<b>)
 End_Rule  _FE_
   SkipTo(</b>)
_EOI_

SHOWTIMES item
 Begin_Rule
   SkipTo(<br>)
 End_Rule  _FE_
   SkipTo(&nbsp;)
_EOI_

Figure 3.7: STALKER extraction rules for the Showtimes wrapper



13

Angeles) while the other might simply list the same restaurant as being in Los Angeles.  Intuitively, we
know that a better way to resolve whether these are two different restaurants is to look at whether their
name and phone numbers are the same.  This type of semantic knowledge is useful when reconciling the
data from two different sources.

We are actively exploring a source-independent solution for intelligently comparing data between multiple
sources in which the data may not appear exactly the same, but can be detected as semantically similar
[Tejada et al. 1998]. Our approach generally involves constructing mapping tables and functions to denote
equivalencies between variant representations of the same data. Analysis of the types of data being
normalized can be used to guide what parts of the data can be ignored when attempting to detect semantic
equality.  Intelligent data comparisons for purposes of detecting semantic equality must be done based on
the domain of the data being compared.  We are exploring how to learn such domain-dependent
transformations in a domain-independent manner.

4.2 Optimizing the Performance of the Mediator

One typical trait of information integration applications is that they are slow.  This should not be surprising,
given the nature of the implementation: at their core, integrated applications are only as fast as their most
latent sources.  Thus, one slow website can substantially affect overall application performance.  In
TheaterLoc, we encountered a speed issue with the Tiger source, which occasionally took several seconds
to render a map.  Another related problem is that some data sources, especially those which are web-based,
are not always reliable.  In TheaterLoc, we found that the Geocoding site was not always working or was
temporarily out-of-service.

As a local remedy for these issues, we are investigating the optimization of data access by selective
materialization of data sources.  Since information integration applications are frequently associated with
very large databases, we must be careful to locally materialize [Ashish et al. 1998] only those instances of
data which will bring the greatest improvement to the overall application performance.  Our approach to
selective materialization is based on the frequency of queries to that data, as well as other source-specific
metadata, such as the metric of source (web site) responsiveness.  We are also exploring the approach of
resolving highly fragmented classes, where a single class may be associated with many sources.  We would
like to collapse the materialization of this data, to a minimal set of classes.

4.3 Automatic Maintenance  via Autonomous Data Gathering

One of the difficulties in integrating the Hollywood.Com source was that the video previews it offered were
in multiple formats.  Often, they were in Microsoft Windows Media format (suitable for Microsoft Media
Player clients), but sometimes only an Apple Quicktime version of the trailer existed.  To address this
problem, we periodically converted the trailers from the Hollywood.com site to be in Windows Media
format, and then stored them locally.   We needed to do this on a regular basis, since it is typical for a few
new movies to be released each week.  In general, this sort of data maintenance was actually representative
of a larger issue: how to automatically gather data and the perform various operations based on that data.
More specifically, in TheaterLoc, some sort of function was needed to automatically scan for new movies
and then update the local trailers site, as necessary.

Initially, we approached this problem by building a script which would automatically download the new
trailers from Hollywood.com and then convert them to the Windows Media format, if needed.  Of course,
one weak aspect of this process is that someone still needed to run the script. Obviously, an improvement to
this it would be preferable to have some automatic means for checking for new movie trailers on
Hollywood.Com and then do the conversion.  We felt that, since the automatic gathering of data from web
based sources was something we already knew how to do, it would be interesting to extend that to the class
of checking for new information on a web site and then potentially using that information to update a local
site (which would be update-friendly, not the typical read-only scenario wrappers face) via the Web.

This goal fits in well with Theseus, a new project we are working on which is closely related to Ariadne.
Theseus builds on Ariadne technology by extending the web-based data gathering and integration paradigm
to the goals of supporting more complex operations on that data (checking when new data is available) as
well as more powerful constructs, such as looping and conditional data gathering.  The looping aspect of



14

our data gathering language in Theseus will allow us to implement the periodic, automatic updating of
movie trailers from Hollywood.Com, as they are released.

5 Conclusion and Future Work

The tools and approach that we used to build TheaterLoc not only make it possible to rapidly assemble the
application, they also provide an application that is easy to maintain and extend.  For example, adding a
new source into the application is simply a matter of building the wrapper for the source and then
describing the contents of this source using the terms from the domain model.  Similarly, dealing with
changes to the sources is also a straightforward process that does not require reengineering the system.

We were able to construct TheaterLoc in a very short amount of time.  It is difficult to provide a precise
estimate on the time required since much of the effort went into building, extending, and refining the tools.
If we were to build all of the domain specific components from scratch today (i.e., the model and
wrappers), it could probably be done in a few days. It would also be useful to compare the time required to
build this application without using Ariadne.  We have not done that, but the next best thing is to compare
this application to the information available from commercial web sites that provide dinner and/or film
information on line, such as movielink.com (777-Film), hollywood.com and dinnerandamovie.com.  If you
look at these other sites, they lack the map based integration, the links to other related data such as
restaurant reviews, and even the ability to quickly navigate from the theater to the trailers of the movies
showing at a theater.  Clearly these could all be done without Ariadne, but would require significantly more
effort to program.

The next step with TheaterLoc is to use it as a foundation for constructing MovieLoc, an application which
will help film production companies do things like advanced marketing/forecasting analysis and identify
filming locations.   In the case of the former, we want to be able to allow film marketing teams to locate
potential theaters to distribute their movies to, based on area demographics and proximities from other
theaters playing that same movie.  In the case of location management, we would like to integrate data from
various location providers (those who are paid to provide film producers a location containing, say, “a
small farmhouse near a swamp”), so that we can support advanced location searches across multiple
providers.

Related to strategic movie deployment, we also intend to support spatial queries on the integrated sources.
With MovieLoc, for example, one can envision a movie distributor who wants to distribute a movie for
young adults to the theaters that are located in the cities with high population of teenagers between the age
of 12 and 18.  Spatial queries would also be relevant with the existing TheaterLoc application, in order to
support marketing queries such as find all the zip-code areas that contain less than three Chinese
restaurants. There are many sources on the Web that can be utilized to support these sorts of queries, such
as the US Census (http://www.census.gov) for obtaining demographic data and the US Postal Service
(http://www.usps.gov) for obtaining geographical coordinates of zip-code areas and cities.

6 Acknowledgements

This work was supported in part by the Integrated Media Systems Center, a NSF Engineering Research
Center, in part by research grants from NCR and General Dynamics Information Systems, in part by
NASA/JPL under contract number 961518, in part by the Rome Laboratory of the Air Force Systems
Command and the Defense Advanced Research Projects Agency (DARPA) under contract number F30602-
98-2-0109, and in part by the United States Air Force under contract number F49620-98-1-0046. The views
and conclusions contained in this article are the authors' and should not be interpreted as representing the
official opinion or policy of any of the above organizations or any person connected with them.

We would like to also thank the rest of the Ariadne team: José Luis Ambite, Yigal Arens, Naveen Ashish,
Dan DiPasquo, Kristina Lerman, Ion Muslea, Maria Muslea, Jean Oh, and Sheila Tejada.  Furthermore, we
would like to thank others who contributed to the integration effort, including Anupam Bordia and Yi-Jing
(Jessie) Chen. Finally, we are also grateful for the help of Chris Stuber, at the USGS Tiger Mapping
Service, for his help regarding the translation of coordinates during map generation.



15

7 References

Ambite, J.L.; Arens, Y.; Ashish, N.; Knoblock, C.A.; Minton, S; Modi, J; Muslea, M.; Philpot, A.;
Shen,W.M.; and Tejada, S. 1998. The SIMS Manual: Version 2.0

Ambite, J.L. and Knoblock, C.A. 1997. Planning by Rewriting: Efficiently Generating High-Quality Plans.
Proceedings of the Fourteenth National Conference on Artificial Intelligence, Providence, RI.

Ambite, J.L. and Knoblock, C.A. 1998. Flexible and Scalable Query Planning in Distributed and
Heterogeneous Environments. Proceedings of the Fourth International Conference on Artificial
Intelligence Planning Systems, Pittsburgh, PA.

Ambite, J.L.; Knoblock, C.A.; Muslea, I.; and Philpot, A.  1998. Compiling Source Descriptions for
Efficient and Flexible Information Integration. Information Sciences Institute, University of Southern
California.

Ashish, N.; Knoblock, C.A.; and Shahabi, C. 1999  Selective materializing data in mediators by analyzing
user queries. Submitted, Fourth IFCIS Conference on Cooperative Information Systems.

Arens, Y.; Knoblock, C.A.; and Shen, W.M. 1996. Query reformulation for dynamic information
integration.  Journal of Intelligent Information Systems, 6(2/3):99-130.

Bayardo Jr., R.J.; Bohrer, W.; Brice, R.; Cichocki, A.; Fowler, J.; Helal, A.; Kashyap, V.; Ksiezyk, T.;
Martin, G.; Nodine, M.; Rashid, M.; Rusinkiewicz, M.; Shea, R.; Unnikrishnan, C.; Unruh, A.; and Woelk,
D. 1997. InfoSleuth: Agent-based semantic integration in open and dynamic environments. Proceedings of
ACM SIGMOD-97.

Doorenbos, R.B.; Etzioni, O.; and Weld, D.S. 1997. A scalable comparison shopping agent for the world-
wide-web. Proceedings of First International Conference on Autonomous Agents.

Genesereth, M.R.; Keller, A.M.; and Duschka, O.M. 1997. Infomaster: An information integration system.
Proceedings of ACM SIGMOD-97.

Hammer, J.; Garcia-Molina, H.; Nestorov, S.; Yerneni, R.; Breunig, M.; and Vassalos, V. 1997. Template-
based wrappers in the TSIMMIS system. Proceedings of ACM SIGMOD-97.

Knoblock, C.A.; Minton, S; Ambite, J.L.; Ashish, N.; Modi, J.; Muslea, I.; Philpot, A. and Tejada, S. 1998
Modeling Web Sources for Information Integration.  Proceedings of the Fifteenth National Conference on
Artificial Intelligence, Madison, WI.

Kushmerick, N.  1997. Wrapper Induction for Information Extraction.  PhD Thesis,  Computer Science
Dept. University of Washington.

Kwok, C.T and Weld, D.S.  1996. Planning to gather information.  In Proceedings of AAAI-96.

Levy, A.Y; Rajaraman, A.; and Ordille, J.J. 1996. Query-answering algorithms for information agents.
Proceedings of AAAI-96.

Muslea, I.; Minton, S.; and Knoblock, C.A. 1998. STALKER: Learning Extraction Rules for
Semistructured, Web-based Information Sources. AAAI-98 Workshop on "AI & Information Integration",
Madison, WI.

Muslea, I.; Minton, S.; and Knoblock, C.A. 1999. A Hierarchical Approach to Wrapper Induction. Third
Conference on Autonomous Agents, Seattle, WA.

Tejada, S.; Knoblock, C.A.; and Minton, S. 1998. Handling inconsistency for multi-source integration.
Technical Report, AAAI-98 Workshop on "AI & Information Integration", Madison, WI.

Weiderhold, G. 1996. Intelligent Integration of Information. Kluwer.


