
Aachen
Department of Computer Science

Technical Report

Automata and Logics for

Message Sequence Charts

Benedikt Bollig

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-10

RWTH Aachen · Department of Computer Science · May 2005

The publications of the Department of Computer Science of RWTH Aachen

(Aachen University of Technology) are in general accessible through the World

Wide Web.

http://aib.informatik.rwth-aachen.de/

Automata and Logics for

Message Sequence Charts

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der Rheinisch-Westfälischen

Technischen Hochschule Aachen zur Erlangung des

akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Benedikt Bollig

aus

Düsseldorf

Berichter: Prof. Dr. Klaus Indermark

Prof. Dr. Wolfgang Thomas

Tag der mündlichen Prüfung: 07.03.2005

Abstract

A message-passing automaton is an abstract model for the implementation of a

distributed system whose components communicate via message exchange and

thereby define a collection of communication scenarios called message sequence

charts. In this thesis, we study several variants of message-passing automata in

a unifying framework. We classify their expressiveness in terms of state-space

properties, synchronization behavior, and acceptance mode and also compare

them to algebraic characterizations of sets of message sequence charts, among

them the classes of recognizable and rational languages.

We then focus on finite-state devices with global acceptance condition that com-

municate via a priori unbounded channels. We show them to be exactly as ex-

pressive as the existential fragment of monadic second-order logic over message

sequence charts and to be strictly weaker than full monadic second-order logic. It

turns out that message-passing automata cannot be complemented and that they

cannot be determinized in general. Those results rely on a new proof technique,

which allows to apply graph acceptors as introduced by Thomas to the framework

of message sequence charts.

Zusammenfassung

Ein kommunizierender Automat ist ein abstraktes Modell eines verteilten Sys-

tems. Er besteht aus einigen Automaten, die über unbeschränkte FIFO-Kanäle

Nachrichten austauschen und auf diese Weise eine Menge von Kommunikations-

szenarien bzw. Message Sequence Charts (MSCs) definieren. In dieser Arbeit

klassifizieren wir kommunizierende Automaten nach ihrem Zustandsraum, ihrer

Akzeptanzbedingung und der Anzahl sogenannter Synchronisationsnachrichten

und diskutieren die Ausdrucksstärke solcher Varianten bzgl. anderer Formalis-

men, etwa bzgl. der Klassen erkennbarer und rationaler Sprachen.

Im weiteren Verlauf der Arbeit konzentrieren wir uns auf kommunizierende Au-

tomaten mit endlichem Zustandsraum. Wir zeigen mit Hilfe der von Thomas

eingeführten Graph-Akzeptoren, die bereits logisch charakterisiert wurden, dass

endliche kommunizierende Automaten gerade diejenigen MSC-Sprachen erken-

nen, die im existentiellen Fragment der monadischen Logik zweiter Stufe, in-

terpretiert über MSCs, definierbar sind, und dass die volle monadische Logik

zweiter Stufe über MSCs ausdrucksstärker ist als ihr existentielles Fragment.

Diese logische Charakterisierung lässt nun den Schluss zu, dass endliche kom-

munizierende Automaten im Allgemeinen nicht komplementierbar sind und dass

nicht alle endlichen kommunizierenden Automaten in einen äquivalenten deter-

ministischen Automaten transformiert werden können.

Acknowledgments

My foremost thank goes to my advisor Prof. Dr. Klaus Indermark. I

thank him for his patience and encouragement, his advice and sugges-

tions, which have influenced me greatly as a computer scientist and

helped to shape my research skills.

I am grateful to Prof. Dr. Wolfgang Thomas for being a member of

my thesis committee. Without his fundamental research, the results

of this thesis would not have been possible.

I thank Prof. Dr. Marta Kwiatkowska for giving me the opportunity

to work with her and her excellent group. I am grateful to the German

Academic Exchange Service (DAAD) for providing financial support

during this memorable time. Not only did I benefit from the research

at Birmingham University, I also made friends there: Marie, Wang,

Dave, Dimitar, and Steve (in order of appearance) have been much

more than a “lunch group” to me.

My special thanks go to Dr. Martin Leucker, who introduced me to

research, message sequence charts, and so much more. I learned a lot

from his knowledge and it has been a privilege working with him and

having him as a friend.

I thank my mate Darius for being a great friend and for always lis-

tening to me no matter what I have to say.

Thanks are given to everybody at I2 for a very stimulating and friendly

research environment, which contributed a lot to this thesis.

Last, but certainly not least, let me record my sincerest thanks to

Kerstin for all her love, care, and patience, and to my parents and

to my sister for the unfailing support they have provided me with

throughout.

Benedikt Bollig

Aachen, May 2005

Contents

1 Introduction 1

1.1 Formal Methods . 1

1.2 Modeling Message-Passing Systems 3

1.2.1 Message Sequence Charts 3

1.2.2 MSC Languages . 4

1.2.3 Towards an Implementation 6

1.3 Contribution and Outline of this Thesis 7

2 Graphs, Words, Traces, and Pictures 9

2.1 Partial Orders and Monoids . 10

2.2 Graphs and Graph Acceptors . 12

2.2.1 Graphs . 12

2.2.2 Monadic Second-Order Logic over Graphs 14

2.2.3 Hanf’s Theorem . 18

2.2.4 Graph Acceptors . 20

2.3 Words . 22

2.4 Mazurkiewicz Traces . 26

2.4.1 Trace Languages . 27

2.4.2 Automata for Traces . 30

2.5 Pictures and Grids . 34

3 Message Sequence Charts 39

3.1 Message Sequence Charts . 39

3.2 Universal and Existential Bounds 43

3.3 Relationships to Mazurkiewicz Traces 45

3.3.1 The Counting Lemma . 45

3.3.2 Prime Partial Message Sequence Charts 46

3.4 Message Contents . 47

ii Contents

3.5 High-Level Message Sequence Charts 49

3.6 Regular MSC Languages . 55

3.7 (E)MSO-definable MSC Languages 56

3.8 Product MSC Languages . 57

4 Message-Passing Automata 61

4.1 Message-Passing Automata . 61

4.2 MPAs vs. Product MSC Languages 68

4.3 MPAs vs. Regular MSC Languages 68

4.4 MPAs vs. EMSO-definable MSC Languages 71

4.4.1 MPA = EMSO ����� . 71

4.4.2 From MPAf to EMSO . 72

4.4.3 From EMSO to MPAf . 73

4.4.4 1-Spheres suffice . 89

4.4.5 MPAs vs. Graph Acceptors 94

4.4.6 MPAs vs. EMSO-definable Product Languages 100

4.5 The Complete Hierarchy . 101

5 Beyond Implementability 107

5.1 EMSO vs. MSO in the Bounded Setting 107

5.2 EMSO vs. MSO in the Unbounded Setting 109

5.3 Determinism vs. Nondeterminism 115

5.4 MPAs vs. Recognizability . 116

5.5 MPAs vs. Rational MSC Languages 117

6 Conclusion and Future Work 123

A The Counterexample 137

B Symbols and Notations 147

Chapter 1

Introduction

Nowadays, electronic devices largely depend on complex hardware and software

systems. Among them, medical instruments, traffic control units, and many more

safety critical systems are subject to particular quality standards. They all come

along with the absolute need for reliability, as, in each case, the consequences of

a breakdown may be incalculable.

1.1 Formal Methods

Many existing systems have been unthinkable some years ago and their complex-

ity is still rapidly growing. Consequently, it becomes more and more difficult to

detect errors or to predict their incidence. Formal methods play a major role dur-

ing the whole system-design process. The term formal methods hereby covers a

wide range of mathematically-derived and ideally mechanized approaches to sys-

tem design and validation. More precisely, research on formal methods attempts

to develop mathematical models and algorithms that may contribute to the tasks

of modeling, specifying, and verifying software and hardware systems. Let us go

into these subareas in more detail:

Modeling To make a system (or the idea of a system) accessible to formal

methods, we require it to be modeled mathematically. Unfortunately, this directly

leads into a dilemma: on the one hand, a model ideally preserves and reflects as

many properties of the underlying system as possible. On the other hand, it

should be compact enough to support algorithms for further system analysis.

However, in general, a good balance between a detailed modeling and abstraction

will pay off. But not only does the modeling process lead to further interesting

conclusions, it may also help itself to get a better understanding of the system at

2 Chapter 1. Introduction

hand. Thus, the purposes of modeling a system are twofold. One is to understand

and document its essential features. The other is to provide the formal basis for a

mathematical analysis. Both are closely related and usually accompanied by each

other. Preferably, the modeling takes place in an early stage of system design.

The starting point, at a high level of abstraction, may be a rough, even if precisely

defined, idea of the system to be, which is subsequently refined stepwise towards

a full implementation. While, as mentioned, the latter might be too detailed to

draw conclusions from, previous stages of the design phase can be consulted for

that purpose.

The models considered in this thesis are message-passing automata, which, though

they might abstract from many details, reflect the behavior of a distributed system

in a suitable manner to make it accessible to formal methods.

Specification Correctness of a system is always relative to a specification, a

property or requirement that is essential to be satisfied. Embedded into the

formal-methods framework, a specification is often expressed within a logical

calculus whose formulas can be interpreted over system models, provided they are

based on a common semantic domain. Prominent examples are monadic second-

order logic [HJJ+95, ABP97], the temporal logics LTL [Pnu77], CTL [CE81],

and the µ-calculus [Koz83]. A specification might also be given in a high-level

language that is closer to an implementation and often allows to derive a system

directly and automatically. In this regard, let us mention some process-algebra

based languages such as CCS [Mil89], ACP [BV94], and LOTOS [BB89] and other

formal design notions like VHDL [Per91] and UML [SP99].

In this thesis, which is about the design of communicating systems, we focus on

a monadic second-order logic, which might be used to formulate properties that

a given system should satisfy, and high-level message sequence charts, which are

employed at a rather early stage of system development.

Verification Once a system is modeled and a specification is given, the next

task might be to check if the specification is satisfied by the model. Thus, if the

system or, rather, the model of a system passes successfully through a correspond-

ing validation process, it may be called correct in a mathematical sense. Prefer-

ably, the verification process runs automatically. However, many frameworks are

too complex to support fully mechanized algorithms. In this respect, we can dis-

tinguish two general approaches to verification: model checking [CGP99], which

is fully automatic, and theorem proving [RV01], which requires human assistance.

Another approach is to derive a system directly from its specification so that,

1.2. Modeling Message-Passing Systems 3

provided the translation preserves the semantics of the specification, it can be

assumed to be correct a priori.

In this thesis, we rather concentrate on the latter approach and point out some

limitations that come along with the high-level specification languages mentioned

in the previous section.

1.2 Modeling Message-Passing Systems

To create formal methods tailored to a given kind of system and the associated

mathematical model, it is generally helpful to study some of the model’s proper-

ties first and to learn more about its limitations coming along with algorithmic

restrictions and its degree of abstraction. In this regard, typical questions to

clarify are “Is my model a suitable one, i.e., does it reflect all the aspects I like

to verify?” or “What kind of problem can I expect to be decidable at all?”.

Basically, that is what this thesis is all about. More specifically, we will con-

centrate on communicating systems (or message-passing systems), which occur

whenever processes and objects communicate or interact, for example, via mes-

sage exchange. At the same time, we focus on issues related to the former two

areas of formal methods, i.e., system modeling and specification. However, the

study of modeling and specification languages interferes with finding algorithms

for their verification. For instance, one particular model of a message-passing

system will be implicitly shown to be too complex (though it is a common and

natural one) to be applicable to verification procedures.

1.2.1 Message Sequence Charts

As mentioned above, it is desirable to apply formal methods even in the early

stages of system design, as early error detection avoids extensive reimplemen-

tation and redesign, which, in turn, might lead to explosive costs. A common

design practice when developing communicating systems is to start with drawing

scenarios showing the intended interaction of the system to be. Message Sequence

Charts (MSCs), a modeling language at a rather high level of abstraction, provide

a prominent notion to further this approach. They are widely used in industry,

standardized [ITU98, ITU99], and similar to UML’s sequence diagrams [Ara98].

An MSC depicts a single partially ordered execution sequence of a system. In

doing so, it defines a collection of processes, which, in its visual representation,

are drawn as vertical lines and interpreted as time axes. Moreover, an arrow

from one line to a second corresponds to the communication events of sending

and receiving a message.

4 Chapter 1. Introduction

An example MSC illustrating a part of BluetoothTM [Blu01], a specification for

wireless communication, is depicted in Figure 1.1 on the facing page. Using

the Host Control Interface (HCI), which links a Bluetooth host (a portable PC,

for example) with a Bluetooth controller (a PCMCIA card, for example), a host

application attempts to establish a connection to another device. The connection-

request phase, which is based on an asynchronous connectionless link (ACL), is

heralded by Host-A sending an HCI Create Connection command to its controller

to initiate a connection. Note that, usually, a command is equipped with param-

eters, which are omitted here. As HCI commands may take different amounts of

time, their status is reported back to the host in form of an HCI Command Status

event. After that, HC-A defers the present request to HC-B, which, in turn,

learns from Host-B that the request has been rejected, again accompanied by

sending a status event. The controllers agree on rejection by exchanging mes-

sages LMP not accepted and LMP detach and, afterwards, provide both Host-A

and Host-B with HCI Connection Complete events.

The execution sequence illustrated above is geared to the visual arrangement

of the message arrows’ endpoints. An endpoint is a send event if it belongs to

the source of some arrow and, otherwise, a receive event. More specifically, we

suppose events located on one and the same process line to be totally ordered and,

moreover, require a receiving event to occur only if the corresponding sending

event has taken place. The abovementioned partial order now arises from the

reflexive transitive closure of those assumptions. Note that, in fact, some pairs

of events cannot be ordered accordingly. Considering our example, receiving

the HCI Command Status event by Host-A may occur before or after receiving

LMP host connection req, while the latter is supposed to happen after sending

the former HCI Command Status event.

1.2.2 MSC Languages

Recall that a specification language might be used to formulate desirable prop-

erties of a given implementation or represent a first intuition of what the system

has to do. While a single MSC can hereby describe no more than one single

execution sequence, a collection of MSCs might capture all the scenarios that a

designer wants the system under development to realize. Based on the notion

of MSCs, several modeling and specification formalisms have been considered at

a formal level, among them high-level MSCs [MR97, AY99, MP99, HMKT00a],

which are capable of describing possibly infinitely many scenarios in a compact

manner. From an algebraic point of view, high-level MSCs are rational expres-

sions defining rational MSC languages by means of choice, concatenation, and

1.2. Modeling Message-Passing Systems 5

Host-A HC-A HC-B Host-B

HCI Create Connection

HCI Command Status

LMP host connection req

HCI Connection Request

HCI Reject Connection Request

HCI Command Status

LMP not accepted

LMP detach

HCI Connection Complete HCI Connection Complete

Figure 1.1: An MSC modeling the ACL connection request phase

iteration. The study of algebraic language classes might then lead us to recog-

nizable MSC languages [Mor02], which can be characterized by certain monoid

automata. Following the classical algebraic approach further, we will come across

the class of regular MSC languages. In their seminal work, Henriksen et al. con-

sider an MSC language to be regular if the corresponding set of linear extensions

forms a regular word language [HMKT00b]. Moreover, there is a close connection

between MSCs and Mazurkiewicz traces so that transferring the regularity no-

tions for traces might be another axis to define regularity of sets of MSCs. Those

aspects have been studied in [Mor01, Kus02, Mor02, GKM04]. As we will see,

the above language classes exhibit quite different properties in terms of imple-

mentability. Hereby, the notion of implementability is derived from a reference

model, the MSC based counterpart of a finite automaton over words, which is

explained in the next section in more detail.

All times, a fruitful way to study properties of language classes has been to

establish their logical characterizations. The study of formalisms for general

structures such as graphs or, more specifically, labeled partial orders and their

relation to monadic second-order (MSO) logic has been a research area of great

interest aiming at a deeper understanding of their logical and algorithmic prop-

erties (see [Tho97b] for an overview). Following the logical approach, one might

likewise argue to call a set of MSCs regular if it is definable in the MSO logic

adjusted to MSCs, because, in the domain of words, regularity and definability in

MSO logic coincide [Büc60, Elg61]. This view was also pursued in [HMKT00b]

where it is in fact shown that MSO captures the class of regular languages when

formulas are supposed to define bounded sets of MSCs. Intuitively, an MSC

language is bounded if its structure exhibits a bound on the number of unre-

6 Chapter 1. Introduction

ceived messages. However, unlike corresponding logics over words and traces,

MSO logic interpreted over arbitrary MSCs turns out to be too expressive to be

considered as a reference logic, as formulas may describe languages that are not

implementable. However, we prove its existential fragment to capture exactly the

implementable specifications and therefore introduce the class of EMSO-definable

languages, which lifts the boundedness restriction without abandoning the exis-

tence of an automata theoretic counterpart. More precisely, we show that an

MSC language is implementable if and only if it is definable in EMSO logic.

1.2.3 Towards an Implementation

The next step in system design might be to supply an implementation realizing or

satisfying an MSC specification. Recall that we are still interested in an abstract

model rather than a concrete implementation in some low-level programming lan-

guage, though the view we are taking now might be much closer to the latter.

More precisely, we ask for automata models that are suited for accepting the sys-

tem behavior described by, say, a high-level MSC, a logical formula, or a monoid

automaton. Consequently, we are particularly interested in their expressiveness

relative to the abovementioned algebraic characterizations.

MSCs exemplify systems that are distributed in nature. Thus, the notion of a

process is central, and it seems natural to consider each process as a single au-

tomaton and to define a notion of communication describing how these parallel

systems work together. Such a collection of communicating automata gives rise

to a message-passing automaton (MPA). Typically, automata are equipped with

some acceptance mode. We discuss MPAs with two different notions of an accep-

tance condition, which is either local, i.e., each process decides on its own when

to stop, or it is global, which allows to select certain combinations of local final

states to be a valid point for termination. It is not surprising that, provided the

system has a single initial state, the latter notion of acceptance is generally more

expressive than the local one. Expressiveness can also be considerably increased

providing synchronization messages sent in addition to the actual message con-

tents. Intuitively, a synchronization message can inform other components about

which transition was taken. We will show that, the more of these messages are

allowed, the more expressive power we have.

Note that, so far, we did not impose any restriction on the cardinality of a local

state space. In the course of our examination, however, finite MPAs, which are

equipped with a global acceptance mode, a device to send synchronization mes-

sages, and a finite state space for each process, will emerge to be kind of reference

model, which represents what we subsequently call implementable. We will show

1.3. Contribution and Outline of this Thesis 7

that, to some extent, finite MPAs are to MSCs as asynchronous automata are to

traces and finite automata are to words. They are more powerful than standard

models considered in previous work, which mainly concentrates on bounded or

unsynchronized behavior. Though finite MPAs employ finite local state spaces,

they are very well suited to generating an unbounded behavior and, in particular,

allow for the recognition of any regular MSC language.

1.3 Contribution and Outline of this Thesis

Even if MPAs are subject to active research, there is no agreement which au-

tomata model is the right one to make an MSC language realizable: while,

for example, [GMSZ02] is based on a local acceptance condition and allows to

send synchronization messages, [AEY00, Mor02] forbid those extra messages. In

[HMKT00b], though a priori unbounded channels are allowed, a channel-bounded

model, equipped with a global acceptance mode, suffices to implement regular

MSC languages. We provide a unifying framework and classify automata models

in terms of their state space, synchronization behavior, acceptance mode, and,

on a rather semantical level, whether they generate bounded or unbounded be-

havior. We then focus on finite MPAs with a global acceptance condition that

communicate via a priori unbounded channels. While previous work lacks an

algebraic or logical characterization of the corresponding class of languages, we

show those automata to be exactly as expressive as EMSO and to be strictly less

expressive than MSO logic. Thus, we provide a specification formalism that cap-

tures all the implementable MSC languages and, at the same time, highlight its

limitations. As a by-product, we show that finite MPAs cannot be complemented

in general and, in doing so, reveal a new proof technique applying Thomas’ graph

acceptors to MSCs. Moreover, we generalize existing results comparing finite

MPAs to high-level MSCs, to recognizable MSC languages, and to some variants

of MSO logic. Summarizing, we separate specification formalisms that yield im-

plementable languages from formalisms that are incompatible with the reference

model of an implementation.

The next chapter recalls fundamental notions and results that serve as a basis

for the study of MSCs. MSCs are introduced formally in Chapter 3, followed by

the definition of several classes of MSC languages. The definition of an MPA can

be found in Chapter 4, which also deals with its expressiveness relative to the

previously proposed language classes. Finally, Chapter 5 studies the gap between

MSO logic and its existential fragment, which is also compared to the formalisms

of high-level MSCs and monoid automata.

8 Chapter 1. Introduction

Some results presented in this thesis appear in [BL04, BL05].

Chapter 2

Graphs, Words, Traces, and

Pictures

In this chapter, we study classes of structures that might be appropriate to de-

scribe and model the behavior of a distributed system. We hereby come from

quite general structures, which, depending on the kind of system at hand, are

refined towards more specific ones. Our starting point will be the class of (di-

rected) graphs that generate partial orders in a natural manner. The nodes of a

graph can then be seen as events, which are executed in the order imposed by the

edge relation. They are partially ordered rather than queued in a total order to

abstract from a concrete ordering of intrinsically independent events. However,

arbitrary partial orders or, rather, their associated graphs might be too general to

model behaviors with special characteristics. For example, if we deal with finite

automata as a model of a system, it might suffice to consider only those graphs

that represent totally ordered sets or words. Moreover, if the system at hand

is designed for sending messages between finitely many processes each of which

is sequential, only those graphs come into question whose edges reflect either a

message exchange or neighboring events executed by one and the same sequential

process. As the distributed behavior of a concurrent system gives rise to events

that cannot be ordered, we shall furthermore exclude graphs provoking such an

unnatural ordering of events. While the former model, a message-passing system,

will lead us to message sequence charts, the latter refers to Mazurkiewicz traces

[DR95]. As we will see, message sequence charts and Mazurkiewicz traces are

incomparable in general, but, in some special cases, can be embedded into each

other.

Besides models for executions of a distributed system, we also study models for

the system itself. A distributed system is represented by an automaton, which

generates a set of behaviors by processing events along the partial order in a

10 Chapter 2. Graphs, Words, Traces, and Pictures

transition-based manner. Finite automata provide the basic automata model,

which works over words reading them sequentially and letter by letter. Finite au-

tomata can be combined towards more complex systems: several components are

henceforth able to communicate with one another. For example, in a message-

passing system, a finite automaton can execute send actions and, in doing so,

write messages in a buffer. Those messages can be read by another automaton

whose further behavior depends on the message contents. Another type of com-

munication is used by asynchronous automata where some transitions are taken

autonomously, while others can only be executed if another component agrees.

2.1 Partial Orders and Monoids

As mentioned above, one possible single behavior of a distributed system can be

described in a compact manner by a partially ordered set. In this regard, let us

first recall some basic definitions and notions.

A binary relation ≤ ⊆ E × E on a set E is called

– reflexive if, for each e ∈ E, e ≤ e,

– transitive if, for any e, e′, e′′ ∈ E, (e ≤ e′ ∧ e′ ≤ e′′) implies e ≤ e′′, and

– antisymmetric if, for any e, e′ ∈ E, (e ≤ e′ ∧ e′ ≤ e) implies e = e′.

Definition 2.1.1 (Partially Ordered Set)

A (finite) partially ordered set (also called poset) is a pair (E,≤) such that

– E is a finite set and

– ≤ is a binary relation on E that is reflexive, transitive, and antisymmetric.

In this context, the relation ≤ is called a partial order.

A totally ordered set is a poset (E,≤) such that, for any e, e′ ∈ E, e ≤ e′ or e′ ≤ e.

Accordingly, we then call the relation ≤ a total order. Note that, throughout this

thesis, we do not distinguish isomorphic structures.

Let P = (E,≤) be a poset. By <, we denote the binary relation ≤ \ {(e, e) | e ∈

E}. Moreover, for e, e′ ∈ E, let us write e l e′ if both e < e′ and, for any e′′ ∈ E,

e < e′′ ≤ e′ implies e′′ = e′. Then, (E,l) and l are called the Hasse diagram of

P and, respectively, the covering relation of ≤. For e ∈ E, we furthermore say

that e is minimal/maximal in P (we also say minimal/maximal in (E,<)) if there

is no e′ ∈ E such that e′ < e/e < e′, respectively.

2.1. Partial Orders and Monoids 11

The structures considered in this thesis are often equipped with a concatenation

function, which allows to combine single behaviors towards more complex ones.

Together with a unit element, this gives rise to a monoid.

Definition 2.1.2 (Monoid)

A monoid is a triple (
�
, ·, 1) such that

�
is a nonempty set, · is an associative

mapping
�
×

�
→

�
(i.e., (t1 · t2) · t3 = t1 · (t2 · t3) for any t1, t2, t3 ∈

�
), and

1 ∈
�

is the unit satisfying 1 · t = t · 1 = t for any t ∈
�
.

A monoid (
�
, ·, 1) is often identified with

�
.

Let (
�
, ·, 1) be a monoid. A subset of

�
is called a language. Given languages

L, L′ ⊆
�
, the product of L and L′ is denoted by L · L′ and defined to be the set

{t · t′ | t ∈ L and t′ ∈ L′}. Furthermore, we set L0 = {1} and, for n ∈ IN (where

IN denotes the set of naturals including 0), Ln+1 = L · Ln. The iteration of L is

defined to be L∗ :=
⋃

n∈IN L
n, which is also denoted by 〈L〉 � . Note that 〈L〉 � is

a submonoid of
�
. By L+, we abbreviate

⋃
n∈IN≥1

Ln where IN≥1 will throughout

this thesis stand for the set of positive natural numbers. A language L ⊆
�

is

called finitely generated if there is a finite subset Γ of
�

such that L ⊆ 〈Γ〉 � . In

that case, we say that L is finitely generated by Γ.

The class RAT � of rational subsets of
�

is the least set satisfying

– ∅ ∈ RAT � ,

– {t} ∈ RAT � for any t ∈
�
, and

– for L1, L2, L ∈ RAT � , L1 · L2, L1 ∪ L2, and L∗ are contained in RAT � .

In other words, a rational language can be obtained from the finite subsets of
�

by means of finitely many unions, products, and iterations, which gives rise

to a rational expression of
�
. Formally, the set of atomic rational expressions

is
�

] {∅}, which can be combined towards expressions α1 · α2, α1 + α2, and

α∗ (α+ will henceforth stand for α · α∗). We denote by L(α) the language that

corresponds to the rational expression α of
�
, i.e., L(∅) = ∅, L(t) = {t} for any

t ∈
�
, L(α1 ·α2) = L(α1)·L(α2), L(α1+α2) = L(α1) ∪ L(α2), and L(β∗) = L(β)∗.

Obviously, any rational language is finitely generated.

A subset L of
�

is called recognizable if there exists a finite monoid (
� ′, ·′, 1′) and

a monoid morphism η :
�
→

� ′ (i.e., η(t1 · t2) = η(t1) ·′ η(t2) for any t1, t2 ∈
�

and

η(1) = 1′) such that L = (η−1 ◦ η)(L). Note that the set of recognizable subsets

of
�

is closed under union, intersection, and complement. Recognizability can be

defined equivalently in terms of monoid automata. Formally, an
�
-automaton is a

quadruple (Q, δ, q0, F) where Q is the nonempty finite set of states, q0 ∈ Q is the

12 Chapter 2. Graphs, Words, Traces, and Pictures

initial state, F ⊆ Q is the set of final states, and δ is a function Q×
�
→ Q such

that, for any q ∈ Q and t1, t2 ∈
�
, δ(q, 1) = q and δ(δ(q, t1), t2) = δ(q, t1 · t2),

which can be considered to be some compositional rule. We might now call a

language L ⊆
�

recognizable if L = {t ∈
�
| δ(q0, t) ∈ F} for some

�
-automaton

(Q, δ, q0, F). The set of recognizable subsets of
�

is denoted by REC � . The

following is well-known.

Proposition 2.1.3 For any monoid
�
,

�
∈ RAT � iff

�
is finitely generated.

Proposition 2.1.4 For any monoid
�
, REC � ⊆ RAT � iff

�
is finitely generated.

See [Och95] and [Cou90] for comprehensive overviews of recognizability and ra-

tionality with a special focus on traces and graphs, respectively.

2.2 Graphs and Graph Acceptors

Directed acyclic labeled graphs can be seen as the most general structure we

consider in this thesis. Many structures that will also be addressed, such as

words and (graphs associated to) partial orders, can be embedded into acyclic

graphs or at least have a corresponding one-to-one graph representation.

2.2.1 Graphs

Let in the following Σ and C be alphabets, i.e., nonempty finite sets, which contain

the elements the components of a graph are labeled with.

Definition 2.2.1 ((Directed) Graph)

A (finite, directed) graph over (Σ, C) is a structure (E, {Cc}c∈C , λ) where E is its

nonempty finite set of nodes, the Cc ⊆ E ×E are disjoint binary relations on E,

and λ : E → Σ is a (node-)labeling function.

Thus, we consider a node e ∈ E of a graph G = (E, {Cc}c∈C , λ) over (Σ, C) to be

labeled with a letter a ∈ Σ if λ(e) = a and we consider a pair (e, e′) ∈
⋃

c∈C Cc

to be labeled with c ∈ C if (e, e′) ∈ Cc. In the sequel, we call C :=
⋃

c∈C Cc the

edge relation or the set of edges of G. Moreover, we sometimes write ≤c for (Cc)
∗,

abbreviate (Cc)
+ by <c, set ≤ to be the relation C∗, and abbreviate C+ by <.

We call G connected if, for any e, e′ ∈ E, (e, e′) ∈ (C ∪ C−1)∗. The cardinality of

G, denoted by |G|, is actually meant to be the cardinality |E| of E. Moreover, for

a subset Σ′ of Σ, we set |G|Σ′ to be |λ−1(Σ′)|. Given a ∈ Σ, we then abbreviate

|G|{a} by |G|a.

2.2. Graphs and Graph Acceptors 13

Graphs will primarily serve as a convenient representation of partial orders, which,

in turn, are a general model for the behavior of a distributed system. Thus, we

assume in the sequel a graph (E, {Cc}c∈C , λ) to generate a partial order, which

means that (E,C∗) is supposed to be a partially ordered set. We furthermore

require C to be irreflexive. The set of all those acyclic graphs is denoted by
���

(Σ, C). A useful subclass of
���

(Σ, C), denoted by
���

H(Σ, C), is the set of

graphs (E, {Cc}c∈C , λ) ∈
���

(Σ, C) such that C = l, i.e., (E,C) is the Hasse

diagram of some partially ordered set. Usually, this will be required if the set

of edge labelings is a singleton. Throughout the thesis, the nodes of a graph are

called events executing actions, which are given by their node labeling.

Consider the graph shown in Figure 2.1 (a). It is contained in
���

H({a, b}, {1, 2}),

as its edge relation is a minimal one to generate some partial order. In contrast,

the graph from Figure 2.1 (b), though it is contained in
���

({a, b}, {1, 2}), is not

minimal in this sense, as there is an edge from e1 to e3 that is already implicitly

given by (e1, e2) and (e2, e3) (even if their common edge labeling, which is 1, is

different from the one of (e1, e3), which is 2). Thus, Figure 2.1 (b) illustrates a

graph that is not contained in
���

H({a, b}, {1, 2}). Finally, the structure from

Figure 2.1 (c) is not even contained in
���

({a, b}, {1, 2}), as it is not acyclic.

e

1 2

1
1 2

21

a

b a

a

b

a

(a)

e1

e2

e3

1 2

1
1

2

1

a

b a

a

b

(b)

1 2

1
1

2

12

a

b a

a

b

(c)

Figure 2.1: Graphs over ({a, b}, {1, 2})

For G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C), a nonempty subset Σ′ of Σ with λ−1(Σ′) 6=

∅, and c ∈ C, we denote by G� (Σ′, {c}) (we just write G�Σ′ if C is a singleton)

the projection (E ′,C′
c, λ

′) ∈
���

(Σ′, {c}) of G onto Σ′ and c where

– E ′ = λ−1(Σ′),

– C′
c is the union of Cc ∩ (E ′×E ′) and the cover relation of the partial order

(Cc)
∗ ∩ (E ′ × E ′), and

– λ′ = λ|E′ (i.e., λ′ is the restriction of λ to E ′).

14 Chapter 2. Graphs, Words, Traces, and Pictures

For e ∈ E, let furthermore G ⇓ e stand for the downwards closure of G wrt. e,

i.e., for the graph (E ′, {C′
c}c∈C , λ

′) ∈
���

(Σ, C) where E ′ = {e′ ∈ E | e′ C∗ e},

C′
c = Cc ∩ (E ′×E ′), and λ′ = λ|E′. If {e′ ∈ E | e′ C e} 6= ∅, the strict downwards

closure of G wrt. e, denoted by G ↓ e, is obtained in the same way as the down-

wards closure, now taking E ′ = {e′ ∈ E | e′ C+ e} as a starting point. Again,

consider Figure 2.1 on the page before to exemplify projection and downwards

closure. The projection G � ({a}, {1}) of the graph G ∈
���

({a, b}, {1, 2}) from

Figure 2.1 (a) onto {a} and 1 is depicted in Figure 2.2 (a). Note that the projec-

tion of a graph from
���

H(Σ, C) is necessarily contained in
���

H(Σ, C), too. The

downwards closure of G wrt. e is given by Figure 2.2 (b), its strict downwards

closure is depicted aside, in Figure 2.2 (c).

1
1

a

a

a
a

(a)

1 2

1 1

a

b a

a

(b)

1 2

a

b a

(c)

Figure 2.2: The projection and the downwards closure of a graph

Let B be a natural. For G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C), we say that the degree

of G is bounded by B if, for any e ∈ E, |{e′ ∈ E | e C e′ or e′ C e}| ≤ B. Given

K ⊆
���

(Σ, C), the degree of K is said to be bounded by B if, for any G ∈ K, the

degree of G is bounded by B. We say that K has bounded degree if its degree is

bounded by some B.

It will be useful to define extended graphs, whose nodes are equipped with an

additional labeling. Let Q be a nonempty and finite set. A (Q-)extended graph

over (Σ, C) is a graph (E, {Cc}c∈C , λ) ∈
���

(Σ × Q,C), i.e, λ is a mapping

E → Σ × Q. Note that λ can be seen as a pair (λ′, ρ) of mappings E → Σ and

E → Q, respectively. Given a class K of graphs over (Σ, C), the corresponding

set of Q-extensions is denoted by KQ.

2.2.2 Monadic Second-Order Logic over Graphs

We recall the notion of monadic second-order (MSO) logic over graphs, i.e., in

its most general case, which then carries over to the more specific cases of words,

2.2. Graphs and Graph Acceptors 15

traces, and message sequence charts. Fragments of MSO will give logical char-

acterizations of respective automata models. For a comprehensive overview of

monadic second-order logics, see [GTW02].

Throughout the thesis, we fix supplies Var = {x, y, . . . , x1, x2, . . .} of individual

variables and VAR = {X, Y, . . . , X1, X2, . . .} of set variables.

Definition 2.2.2 (Monadic Second-Order Logic over Graphs)

Formulas from MSO(Σ, C), the set of monadic second-order formulas over the

class
���

(Σ, C), are built up from the atomic formulas

– λ(x) = a (for a ∈ Σ),

– x Cc y (for c ∈ C),

– x ∈ X, and

– x = y

(where x, y ∈ Var and X ∈ VAR) and, furthermore, allow the boolean connectives

¬, ∨, ∧, →, and ↔ and the quantifiers ∃ and ∀, which can be applied to either

kind of variable and are called individual (first-order) and set (second-order)

quantifier, respectively.

Let x C y stand for the MSO(Σ, C)-formula
∨

c∈C x Cc y. Moreover, for some

c ∈ C, x ≤c y and x ≤ y will abbreviate

∀X (x ∈ X ∧ ∀z∀z′ ((z ∈ X ∧ z Cc z
′) → z′ ∈ X) → y ∈ X)

and, respectively,

∀X (x ∈ X ∧ ∀z∀z′ ((z ∈ X ∧ z C z′) → z′ ∈ X) → y ∈ X) ,

while x <c y and x < y are shorthands for the formulas x ≤c y ∧ ¬(x = y) and

x ≤ y ∧ ¬(x = y), respectively.

LetG = (E, {Cc}c∈C , λ) ∈
���

(Σ, C) be a graph. Given an interpretation function

I, which assigns to an individual variable x an event I(x) ∈ E and to a set

variable X a set of events I(X) ⊆ E, the satisfaction relation G |=I ϕ for a

formula ϕ ∈ MSO(Σ, C) is given by

– G |=I λ(x) = a if λ(I(x)) = a,

– G |=I x Cc y if I(x) Cc I(y),

– G |=I x ∈ X if I(x) ∈ I(X), and

16 Chapter 2. Graphs, Words, Traces, and Pictures

– G |=I x = y if I(x) = I(y),

while the remaining operators are defined as usual. If we consider sentences, i.e.,

formulas without free variables, we accordingly replace |=I with |=.

For an MSO(Σ, C)-formula ϕ, the notation ϕ(x1, . . . , xm, X1, . . . , Xn) shall in-

dicate that at most x1, . . . , xm, X1, . . . , Xn occur free in ϕ. The fragment of

MSO(Σ, C) that does not make use of any set quantifier is the set of first-order for-

mulas over
���

(Σ, C) and denoted by FO(Σ, C). An MSO(Σ, C)-formula is called

existential if it is of the form ∃X1 . . .∃Xnϕ(X1, . . . , Xn, Y) where Y is a block of

second-order variables and ϕ(X1, . . . , Xn, Y) ∈ FO(Σ, C). Let EMSO(Σ, C) de-

note the class of existential MSO(Σ, C)-formulas. In general, we would like to dis-

tinguish formulas by their quantifier-alternation depth. So Σk(Σ, C) (k ≥ 1) shall

contain the MSO(Σ, C)-formulas of the form ∃X1∀X2 . . .∃/∀Xkϕ(X1, . . . , Xk, Y)

with first-order kernel ϕ(X1, . . . , Xk, Y) (Xi and Y are blocks of second-order

variables). Note that Σ1(Σ, C) and EMSO(Σ, C) coincide. Let us furthermore

introduce a variant of MSO(Σ, C): choosing our atomic entities to be

λ(x) = a (for a ∈ Σ) x ≤ y x ∈ X x = y

yields respectively the logics MSO(Σ, C)[≤], EMSO(Σ, C)[≤], Σk(Σ, C)[≤], and

FO(Σ, C)[≤]. The semantics of x ≤ y wrt. a graph G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C) and a corresponding interpretation function I is determined by G |=I

x ≤ y if I(x) C∗ I(y). Other logics arise in a similar manner. Restricting

to an ordering relation l might lead to the logic EMSO(Σ, C)[l], for example.

Otherwise, it will be clear from the context, which predicates are supported by a

logic and which are not.

For set variables X1, . . . , Xn (n ≥ 1), the first-order formula

partition(X1, . . . , Xn) :=


∀x

∨

i∈{1,...,n}

x ∈ Xi


 ∧

(
∀x

∧

1≤i<j≤n

¬(x ∈ Xi ∧ x ∈ Xj)

)

will subsequently formalize that the set of nodes of the graph at hand can be

partitioned into sets X1, . . . , Xn.

Let K ⊆
���

(Σ, C). For an MSO(Σ, C)-sentence ϕ, the language of ϕ relative to

K, denoted by LK(ϕ), is the set of graphs G ∈ K with G |= ϕ. However, as a

formula ϕ(X1, . . . , Xn) ∈ MSO(Σ, C) (with free variables) can be considered to

define a language of graphs whose labelings are enriched by tuples from {0, 1}n,

we may accordingly denote the corresponding language of ϕ relative to K by

LK(ϕ), too, which is then a subset of K{0,1}n

. More precisely, an extended graph

G = (E, {Cc}c∈C , (λ, ρ)) ∈ K{0,1}n

satisfies ϕ if we have (E, {Cc}c∈C , λ) |=IG
ϕ

2.2. Graphs and Graph Acceptors 17

where, for any e ∈ E, e ∈ IG(Xi) if ρ(e)[i] = 1 (where ρ(e)[i] yields the i-th

component of ρ(e)).

For F ⊆ MSO(Σ, C) and sets L,K ⊆
���

(Σ, C), L is called FK-definable if

L = LK(ϕ) for some sentence ϕ ∈ F. The induced classes of MSO(Σ, C)K-,

EMSO(Σ, C)K-, Σk(Σ, C)K-, and FO(Σ, C)K-definable graph languages are de-

noted by MSO(Σ, C)K, EMSO(Σ, C)K, LK(Σk(Σ, C)), and FO(Σ, C)K, respec-

tively. Accordingly, wrt. the alternative predicate symbol ≤, we obtain fur-

ther classes of graph languages, namely MSO(Σ, C)[≤]K, EMSO(Σ, C)[≤]K,

LK(Σk(Σ, C)[≤]), and FO(Σ, C)[≤]K.

For K ⊆
���

(Σ, C), we say that the monadic quantifier-alternation hierarchy over

K is infinite if the sets LK(Σk(Σ, C)), k = 1, 2, . . ., form an infinite strict hierarchy.

Recall that, in general, the classes of Σk(Σ, C) ��� (Σ,C)-definable languages form

an infinite hierarchy [MT97, MST02]. In other words, the more alternation of

second-order variables is allowed, the more expressive formulas become.

It may be the case that the set of node labelings or the set of edge labelings is a

singleton so that we do not need to explicitly refer to Σ and C, respectively. In

that case, we speak of graphs over (Σ,−) or over (−, C) and respectively write,

for example,
���

(Σ,−) and FO(−, C)[≤]K. Moreover, if the labeling alphabets

are clear from the context, we often omit the reference to Σ and C completely

and write, for instance,
���

, EMSO, MSOK, or FO[≤]K.

Besides MSO(Σ, C)[≤] and corresponding sublogics, consider MSO0(Σ, C), an-

other slightly modified logic, which, in contrast to MSO(Σ, C)[≤], has in general

the same expressive power as MSO(Σ, C). Its atomic entities are

λ(X) ⊆ {a} (for a ∈ Σ) X Cc Y X ⊆ Y Sing(X)

where X, Y ∈ VAR. Moreover, only second-order quantifiers are allowed. The

meaning of an MSO0(Σ, C)-formula is the expected one, i.e., given a graph G =

(E, {Cc}c∈C , λ) ∈
���

(Σ, C) and an interpretation I,

– G |=I λ(X) ⊆ {a} if, for any e ∈ I(X), λ(e) = a,

– G |=I X Cc Y if I(X) and I(Y) are singletons {e} and, respectively, {e′}

such that e Cc e
′,

– G |=I X ⊆ Y if I(X) ⊆ I(Y), and

– G |=I Sing(X) if I(X) is a singleton.

Following our convention, let, given a set K ⊆
���

(Σ, C) of graphs, MSO0(Σ, C)K
denote the class of MSO0(Σ, C)K-definable graph languages. It is easy to con-

struct from an MSO(Σ, C)- an equivalent MSO0(Σ, C)-sentence and vice versa,

which leads us to the following lemma.

18 Chapter 2. Graphs, Words, Traces, and Pictures

Lemma 2.2.3 For any K ⊆
���

(Σ, C), we have

MSO(Σ, C)K = MSO0(Σ, C)K.

Let us discuss further relations between the proposed language classes.

Lemma 2.2.4 Let L and K be subsets of
���

. If L is MSOK-definable, then it

is (Σk)K-definable for some k ≥ 1.

Proof From a given MSO-sentence ϕ, we first build an MSO0-sentence ϕ′ in

prenex normal form that is equivalent to ϕ wrt. graphs from K. In particu-

lar, each first-order quantifier has been replaced with a second-order one, while

the resulting second-order variables X have been relativized by the (first-order

definable) predicate Sing(X). First-order definability of the atomic predicates

occurring in ϕ′ then leads to some Σk-formula for suitable k. �

Lemma 2.2.5 For any class K ⊆
���

, we have

MSO[≤]K ⊆ MSOK.

Proof In an MSO[≤]-formula, replace any occurrences of x ≤ y with

∀X (x ∈ X ∧ ∀z∀z′ ((z ∈ X ∧ z C z′) → z′ ∈ X) → y ∈ X)

to obtain an MSO-formula. �

However, the inverse does not hold in general, i.e., the collection of Cc is not

necessarily expressible in terms of ≤. As we will see, the above does neither hold

for the existential nor the first-order fragment of MSO.

Trivially, the sets of first-order, existential monadic second-order, and monadic

second-order formulas form a hierarchy:

Lemma 2.2.6 For any class K ⊆
���

, we have

(a) FOK ⊆ EMSOK ⊆ MSOK and

(b) FO[≤]K ⊆ EMSO[≤]K ⊆ MSO[≤]K.

2.2.3 Hanf’s Theorem

Besides formulas, graphs themselves may provide a framework to specify graph

properties. For instance, we might be interested in the set of those graphs in

which a given pattern occurs at least, say, n ∈ IN times. A pattern H hereby

2.2. Graphs and Graph Acceptors 19

specifies the local neighborhood around a distinguished center γ where the size

of the neighborhood is constituted by a natural R ∈ IN, the radius of H, which

restricts the distance of any node of H to γ.

Let us make this idea more precise and let R be a natural. Given a graph

G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C) and nodes e, e′ ∈ E, the distance dG(e′, e) from

e′ to e in G is ∞ if it holds (e, e′) 6∈ (C ∪ C−1)∗ and, otherwise, the minimal

natural number k such that there is a sequence of elements e0, . . . , ek ∈ E with

e0 = e, ek = e′, and ei C ei+1 or ei+1 C ei for each i ∈ {0, . . . , k− 1}. Sometimes,

if it is clear from the context, we omit the subscript G just writing d(e′, e). An

R-sphere over (Σ, C) is a graph H = (E, {Cc}c∈C , λ, γ) over (Σ, C) together with

a designated sphere center γ ∈ E such that, for any e ∈ E, dH(e, γ) ≤ R (in

slight abuse of notation, the distance from one node to another can be given wrt.

a sphere as well). For a graph G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C) and e ∈ E, let the

R-sphere of G around e, denoted by R-Sph(G, e), be given by (E ′, {C′
c}c∈C , λ

′, e)

where E ′ = {e′ ∈ E | dG(e′, e) ≤ R}, C′
c = Cc ∩ (E ′ × E ′) for each c ∈ C, and

λ′ is the restriction of λ to E ′. A 2-sphere over ({a, b}, {1, 2}) is shown in part

(a) of Figure 2.3 where the sphere center is depicted as a rectangle. It precisely

deals with the 2-sphere of the graph aside (Figure 2.3 (b)) around e.

Essentially, Hanf’s Theorem states that any first-order sentence can be rephrased

as a boolean combination of conditions “R-sphere H occurs at least n ∈ IN times”.

Such a requirement is said to be satisfied by G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C) if,

in the obvious manner, it is satisfied by the mapping that assigns to each R-sphere

H the natural |{e ∈ E | R-Sph(G, e) ∼= H}|, i.e, the number of occurrences of H

in G. (Hereby and henceforth, ∼= stands for the isomorphism relation.) Relative

to a set of graphs K, this gives rise to the class of locally threshold testable graph

languages, which is denoted by LT T (Σ, C)K.

Theorem 2.2.7 ([Han65]) For any class K ⊆
���

(Σ, C) of bounded degree and

any L ⊆ K, L ∈ FO(Σ, C)K implies L ∈ LT T (Σ, C)K.

The next step towards a logically founded automata theory over graphs is to

establish a connection between EMSO-definable and locally threshold testable

languages. So let us introduce some further notions and let n ≥ 1 be a positive

natural. Given an extended graph G = (E, {Cc}c∈C , λ) ∈
���

(Σ×{0, 1}n, C) over

(Σ, C), the projection of G is defined to be h(G) := (E, {Cc}c∈C , λ
′) ∈

���
(Σ, C)

where, for any e ∈ E, we have λ′(e) = a if λ(e) = (a, (b1, . . . , bn)) for some

b1, . . . , bn ∈ {0, 1}. (Note that this differs from the definition of a projection we

have given above.) The projection function h is canonically extended towards

graph languages L ⊆
���

(Σ × {0, 1}n, C), i.e., h(L) := {h(G) | G ∈ L}. Recall

that a formula ϕ(X1, . . . , Xn) ∈ MSO(Σ, C) can be interpreted wrt. G by inferring

20 Chapter 2. Graphs, Words, Traces, and Pictures

2

2

1

1

2

1

a

b

b

a

a

b

b

(a)

e

1

1
2

2

2

1

1

2

1

a

b

b

a

a

b

b

a

(b)

Figure 2.3: A 2-sphere over ({a, b}, {1, 2})

from the additional labelings an interpretation function IG, which assigns to

variable Xi all those nodes whose labeling in the i-th component equals 1 so that

we may write G |= ϕ(X1, . . . , Xn) if h(G) |=IG
ϕ(X1, . . . , Xn).

The following proposition basically states that a language is EMSO-definable iff

it is the projection of some locally threshold testable set.

Proposition 2.2.8 ([Tho96]) For any class K ⊆
���

(Σ, C) of bounded degree,

we have EMSO(Σ, C)K =
⋃

n≥1{h(L) | L ∈ LT T (Σ × {0, 1}n, C)K{0,1}n}.

Proof Recall that a graph language L ⊆
���

(Σ, C) is EMSOK-definable iff it

is the language of some EMSO(Σ, C)-sentence ∃X1 . . .∃Xnϕ(X1, . . . , Xn) (where,

without loss of generality, we can assume that n ≥ 1) with first-order kernel ϕ.

As ϕ can be seen as a sentence from FO(Σ × {0, 1}n, C) (replace any x ∈ Xi

with
∨

bi=1 λ(x) = (a, (b1, . . . , bn)), LK{0,1}n (ϕ) ∈ FO(Σ × {0, 1}n, C)K{0,1}n is,

according to Theorem 2.2.7, a locally threshold testable set, whose projection

h(LK{0,1}n (ϕ)) coincides with L. �

2.2.4 Graph Acceptors

Graph acceptors [Tho91, Tho97a] are a generalization of finite automata to

graphs. They are known to be expressively equivalent to EMSO logic wrt. graphs

of bounded degree. A graph acceptor works on a graph as follows: it first assigns

to each node one of its control states and then checks if the local neighborhood

of each node (incorporating the state assignment) corresponds to a pattern from

a finite supply of spheres.

2.2. Graphs and Graph Acceptors 21

Definition 2.2.9 (Graph Acceptor [Tho91, Tho97a])

A graph acceptor over (Σ, C) is a structure B = (Q,R,S,Occ) where

– Q is its nonempty finite set of states,

– R ∈ IN is the radius,

– S is a finite set of R-spheres over (Σ ×Q,C), and

– Occ is a boolean combination of conditions of the form “sphere H ∈ S

occurs at least n times” where n ∈ IN.

A run of B on a graph G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C) is a mapping ρ : E →

Q such that, for each e ∈ E, the R-sphere of (E, {Cc}c∈C , (λ, ρ)) around e is

isomorphic to some H ∈ S. We call ρ accepting if the tiling of G with spheres

from S, which is uniquely determined by ρ, satisfies the constraints imposed by

Occ. (In the tiling induced by ρ, the sphere H ∈ S occurs |{e ∈ E | H ∼=
R-Sph((E, {Cc}c∈C , (λ, ρ)), e)}| times.) The language of B relative to a class

K ⊆
���

(Σ, C), denoted by LK(B), is the set of graphs G ∈ K on which there is an

accepting run of B. Moreover, we denote by GA(Σ, C)K (GAK if Σ and C are clear

from the context) the class {L ⊆ K | L = LK(B) for some graph acceptor B over

(Σ, C)}. An interesting class of graph languages distinguishes those sets that are

recognized by some graph acceptor that employs only k-spheres for some k ∈ IN.

Accordingly, we denote by k-GA(Σ, C)K or k-GAK the class {L ⊆ K | L = LK(B)

for some graph acceptor B = (Q,R,S,Occ) over (Σ, C) with R = k}.

The following is quite obvious:

Lemma 2.2.10 For any k ∈ IN≥1 and K ⊆
���

,

k-GAK ⊆ (k + 1)-GAK.

Conversely, however, the radius of some graph acceptor cannot be reduced arbi-

trarily.

Lemma 2.2.11

1-GA ��� $ GA ��� .

The proof is deferred to Section 2.5.

There are graph languages recognized by graph acceptors that can even do with-

out any occurrence constraint, which actually means that the occurrence con-

straint is set to be true a priori. We denote the arising classes by GA(Σ, C)−K
(GA−

K) and k-GA(Σ, C)−K (k-GA−
K).

22 Chapter 2. Graphs, Words, Traces, and Pictures

Lemma 2.2.12 In general, 1-GAK \ GA−
K is not empty.

Proof Consider graphs G1 and G2 over ({a, b},−) where G1 and G2 each con-

sist of one event, which is labeled with a and b, respectively. Then, {G1, G2} is

contained in 1-GA ��� ({a,b},−) \ GA−
��� ({a,b},−). On the one hand, any graph acceptor

without occurrence constraint recognizing both G1 and G2 also admits an accept-

ing run on the union of G1 and G2 (which is obtained in the obvious manner).

On the other hand, {G1, G2} is the language of some graph acceptor with radius

1 where an occurrence constraint ensures that the union of G1 and G2 is excluded

from the recognized language. �

Note that, considering a graph acceptor relative to the class
���

of all graphs, its

spheres themselves are contained in
���

. It might be worth noting that such a

coincidence does not necessarily hold for arbitrary classes of graphs, i.e., applying

graph acceptors to a subclass K of
���

, their spheres might still require a more

general structure than K admits. But obviously, it always suffices to restrict to

those spheres that can be embedded into some graph from K. Those considera-

tions will play a role when we address the issue of graph acceptors over message

sequence charts.

Let us now compare EMSO logic to the formalism of graph acceptors.

Theorem 2.2.13 ([Tho96, Tho97a]) For any class K ⊆
���

of bounded de-

gree, it holds

EMSOK = GAK.

Proof The equivalence directly follows from Proposition 2.2.8. In particular,

the number of states of a graph acceptor simulating a given existential sentence

∃X1 . . .∃Xnϕ(X1, . . . , Xn) with first-order kernel ϕ depends on the number n of

set quantifiers. �

2.3 Words

Words can be represented in many different ways. For example, a word can be

seen as a string, i.e., a sequence of symbols. Such a sequence gives rise to a totally

ordered set, a special case of a partially ordered one, which, as we have seen, has

a graph-theoretical counterpart.

Let Σ be an alphabet. A word over Σ is an (in our case) nonempty structure w =

({1, . . . , n},C, λ) where 1, . . . , n are the letter positions of w, C is the successor

relation on {1, . . . , n}, which contains the pairs (i, i+ 1) with i ∈ {1, . . . , n− 1},

and λ is a mapping {1, . . . , n} → Σ. The set of words over Σ is denoted by
�

(Σ)

2.3. Words 23

or simply by
�

if Σ is clear from the context. Note that a word over Σ is just a

graph over Σ and a singleton, which is, to some extent, extraneous. Thus,
�

(Σ) is

simply
���

(Σ,−) restricted to graphs (E,C, λ) ∈
���

H(Σ,−) such that C∗ forms

a total order. Recall that we do not distinguish isomorphic structures. We can

therefore identify a word ({1, . . . , n},C, λ) ∈
�

with the sequence a1 . . . an ∈ Σ∗

such that, for each i ∈ {1, . . . , n}, ai = λ(i). Given a word ({1, . . . , n},C, λ) ∈
�

,

we denote by first(w) and last(w) the events 1 and n, respectively.

It will be useful to allow a word to be empty. The empty word, denoted by ε in

the following, can be considered to be the structure (∅, ∅, ∅), i.e., we deal with

the structure with an empty set of events. Though, in subsequent definitions, the

empty word is not addressed explicitly as a special case of a word, it will be clear

how to extend definitions towards ε. Moreover, ε appears as the unit word in the

free monoid
�

. Recognizability and rationality coincide in finitely-generated free

monoids, which is the commonly known Kleene’s Theorem.

Theorem 2.3.1 ([Kle56])

REC � = RAT �

Note that a recognizable word language is also called regular. As
�

(Σ) ⊆
���

(Σ,−), the monadic second-order formulas that can be applied to words over

Σ, are those from MSO(Σ,−). Recall that the corresponding atomic entities are

λ(x) = a (for a ∈ Σ) x C y x ∈ X x = y

(where x, y ∈ Var and X ∈ VAR). The definition of their semantics arises from

the general case of graphs.

We now recall a well-known automata model, which is tailored to words.

Definition 2.3.2 (Finite Automaton)

A finite automaton over Σ is a structure (S,∆, sin , F) where

– S is its nonempty finite set of states,

– ∆ ⊆ S × Σ × S is the set of transitions,

– sin ∈ S is the initial state, and

– F ⊆ S is the set of final states.

Let A = (S,∆, sin , F) be a finite automaton over Σ. A run of A on a word w =

({1, . . . , n},C, λ) ∈
�

is a mapping ρ : {0, 1, . . . , n} → S such that ρ(0) = sin

24 Chapter 2. Graphs, Words, Traces, and Pictures

and, for each i ∈ {1, . . . , n}, (ρ(i − 1), λ(i), ρ(i)) ∈ ∆. We call ρ accepting if

ρ(n) ∈ F . The language of A, denoted by L(A), is the set {w ∈
�

| there is

an accepting run of A on w}. Note that ε is defined to be contained in L(A) if

(and only if) sin ∈ F . By FA(Σ) (FA if Σ is clear from the context), we denote

the class of word languages that are recognized by some finite automaton over

Σ. Obviously, a finite automaton gives rise to a
�

-automaton and vice versa.

Moreover, finite automata can be characterized in terms of MSO.

Theorem 2.3.3 ([Büc60, Elg61])

MSO � = FA = REC �

Proof It remains to show the first equation. Let us first address the direction

from right to left. So suppose A = (S,∆, sin , F) to be a finite automaton over

an alphabet Σ, say with state set S = {q0, . . . , qk} where sin = q0. Then, for any

word w = ({1, . . . , n},C, λ) ∈
�

(Σ), we have w ∈ L(A) iff

w |= ∃X0 . . .∃Xk[
partition(X0, . . . , Xk)

∧ ∀x(last(x) →
∨

qi∈F x ∈ Xi)

∧ ∀x∀y
(
x C y →

∨
(qi,a,qj)∈∆ (x ∈ Xi ∧ λ(y) = a ∧ y ∈ Xj)

)

∧ ∀x
(
first(x) →

∨
(q0,a,qi)∈∆ (λ(x) = a ∧ x ∈ Xi)

)]

Hereby, the predicates first(x) and last(x) are used to abbreviate ¬∃y(y < x) and

¬∃y(x < y), i.e., to access the first and the last position of a word, respectively.

Note that, if the empty word is not recognized by A, one hast to add a clause

∃x(x = x), as, otherwise, ε will be included in the language of the above formula.

So let us show the converse, i.e., construct from an arbitrary MSO(Σ,−)-sentence

ψ a finite automaton A over Σ such that L(A) = L � (Σ)(ψ). According to Lemma

2.2.3, it is sufficient to give an inductive translation of an MSO0(Σ,−)-formula of

the form ϕ(Y1, . . . , Yn) = (∃/¬∃)Xk . . . (∃/¬∃)X1ϕ
′(Y1, . . . , Yn, Xk, . . . , X1) with

quantifier-free ϕ′, which (if n ≥ 1) defines a word language over Σ × {0, 1}n in

the obvious manner, into a corresponding finite automaton A over Σ × {0, 1}n.

For atomic formulas, the translation is straightforward. For example, the fi-

nite automaton of a subformula Xi ⊆ Xj just has to check if, in each letter

to read, the component that belongs to Xi is 0 or the component of Xj is 1.

In the induction step, we can restrict to negation, disjunction, and existential

quantification. While the former two refer to the automata theoretic construc-

tions of complementation and union, respectively, the latter results in a projec-

tion of the automaton at hand. So suppose A to be the finite automaton for

2.3. Words 25

ϕ′′(Y1, . . . , Yn, Xk, . . . , Xi+1) = (∃/¬∃)Xi . . . (∃/¬∃)X1ϕ
′(Y1, . . . , Yn, Xk, . . . , X1)

with 0 ≤ i < k. If we precede ϕ′′ with ∃Xi+1, then the desired automaton

over Σ×{0, 1}n+k−(i+1) basically simulates A but guesses (rather than reads) the

component of Xi+1 in a letter. In other words, each letter is projected onto the

remaining components. �

The above proof allows to effectively construct from any given MSO-sentence an

equivalent EMSO-sentence.

Corollary 2.3.4

EMSO � = MSO �

In general, first-order logic is not as expressive as monadic second-order logic.

Moreover, the set of FO � -definable word languages is strictly contained in the

class of FO[≤] � -definable languages.

Proposition 2.3.5

FO � $ FO[≤] � $ EMSO � = MSO �

Proof While the first strict inclusion is witnessed by the language of the rational

expression a∗ · b · a∗ · c · a∗, which is FO[≤] � - but not FO � -definable, the set of

words of even length turns out to be EMSO � - but not FO[≤] � -definable. See

[Tho97b] for further details. �

An important concept of partially ordered sets is their characterization in terms

of linear extensions or linearizations, which establishes a relationship between

posets and words. So let G = (E, {Cc}c∈C , λ) ∈
���

(Σ, C) be a graph. A word

(E ′,C′, λ′) ∈
�

(Σ) is called a linearization of G if E ′ = E, C′ is the covering

relation of some total order containing C∗, and λ′ = λ. The set of linearizations

of G is denoted by Lin(G). This notion is extended to sets L of graphs according

to Lin(L) :=
⋃

G∈L Lin(G). For example, abaa and aaba are the only lineariza-

tions of the graph depicted in part (b) of Figure 2.2 on page 14. In turn, one

cannot uniquely infer a graph from a given linearization in general, because a

linear extension abstracts away some edges and edge labelings. However, in most

relevant cases (among them Mazurkiewicz traces and message sequence charts), it

is possible to reconstruct a graph from a given linearization, as, for those classes

of graphs, the edge relation and its label partitioning is uniquely determined by

the rest of the structure.

Let us conclude this section with a comparison of the automata models for words

we have seen so far.

26 Chapter 2. Graphs, Words, Traces, and Pictures

Corollary 2.3.6

1-GA � = GA � = FA

Proof The second equality directly follows from Theorem 2.2.13, Theorem 2.3.3,

and Corollary 2.3.4. To prove the first equality, we easily verify that the tran-

sitions of a finite automaton can be simulated using 1-spheres. In particular,

initial/final transitions give rise to 1-spheres whose sphere center has no prede-

cessor/successor, respectively. �

Taking into consideration that, over words, a graph acceptor can count the num-

ber of employed spheres up to a certain threshold just by means of control states,

we get that graph acceptors can do without occurrence constraints. In general,

however, this applies at most to classes of connected graphs (cf. Lemma 2.2.12).

Lemma 2.3.7 ([Tho96])

GA−
� = GA �

2.4 Mazurkiewicz Traces

While words abstract from independence and dependence of actions or might

be used to model the behavior of purely sequential systems, Mazurkiewicz traces

preserve some partial-order properties of a distributed system. Given an alphabet

Σ of actions, they are based on a reflexive and symmetric relation D ⊆ Σ × Σ

(in particular, for any a, b ∈ Σ, (a, b) ∈ D implies (b, a) ∈ D), which is called a

dependence relation over Σ. The pair (Σ, D) is then called a dependence alphabet.

Let K ≥ 1 be a natural in the following and let [K] denote the set {1, . . . , K}

of agents. Given (not necessarily disjoint) alphabets Σ1, . . . ,ΣK , we call the

tuple (Σ1, . . . ,ΣK) a distributed alphabet. Elements from Σi are understood to be

actions that are performed by agent i. Let in the following Σ̃ = (Σ1, . . . ,ΣK) be

a distributed alphabet and, for a ∈
⋃

i∈[K] Σi, loc(a) := {i ∈ [K] | a ∈ Σi} denote

the set of agents that are involved in the action a. A distributed alphabet Σ̃

determines the canonical dependence relation DΣ̃ = (Σ, D) where Σ =
⋃

i∈[K] Σi

and D = {(a, b) ∈ Σ × Σ | loc(a) ∩ loc(b) 6= ∅}. Thus, actions a and b are

understood to be dependent if they can both be performed by one and the same

sequential agent. Trivially, an action a ∈ Σ depends on itself.

For the rest of this section, we fix a natural K ≥ 1 and a distributed alphabet

Σ̃ = (Σ1, . . . ,ΣK) with associated dependence relation DΣ̃ = (Σ, D), i.e., in

particular, Σ will denote
⋃

i∈[K] Σi.

2.4. Mazurkiewicz Traces 27

Definition 2.4.1 (Mazurkiewicz Trace [DR95])

A (Mazurkiewicz) trace over Σ̃ is a graph (E,C, λ) ∈
���

H(Σ,−) such that, for

any e, e′ ∈ E,

– e C e′ implies (λ(e), λ(e′)) ∈ D and

– (λ(e), λ(e′)) ∈ D implies e C∗ e′ or e′ C∗ e.

Recall that, for a trace (E,C, λ) over Σ̃, C and l coincide.

The set of traces over Σ̃ is denoted by
���

(Σ̃). As usual, we often write
���

if

Σ̃ can be learned from the context. Remarkably, if D = Σ × Σ, any trace from
���

(Σ̃) constitutes a totally ordered set so that
���

(Σ̃) ⊆
�

(Σ).

Accordingly, the structure from part (a) of Figure 2.4 on the next page is not

a trace over ({a, b}, {b, c}) (strictly speaking, there is no distributed alphabet at

all that makes it a trace). It is contrary to the requirement that events that

immediately follow each other carry dependent actions. Though e2 is an imme-

diate successor of e1, it executes an action a that is independent of c, which is

executed by e1. This contradicts the intuition that the order of execution only

matters if actions clash in using the same resources. For this reason, e2 and e3
should actually be ordered. Part (b) of Figure 2.4 on the following page presents

a trace over ({a, b}, {b, c}), as its associated partial order fulfills both ordering

requirements. Note that, however, two events e, e′ ∈ E of a trace (E,C, λ) ∈
���

might be ordered wrt. C∗ though their labels λ(e) and λ(e′) are independent, per

se. This is the case if, for example, there is a third event e′′ arranged in order

between e and e′ whose label depends on both λ(e) and λ(e′).

Note that, usually, Mazurkiewicz traces are defined as posets (E,≤, λ) [DR95].

But to treat all the structures relevant to this thesis in a common framework,

a trace is given by its graphical representation. However, from a trace T , we

can uniquely derive the corresponding poset T ′ and, vice versa, T ′ gives rise to a

unique graph, which is identical to T .

2.4.1 Trace Languages

Given a trace T = (E,C, λ) ∈
���

and i ∈ [K], let Ei denote λ−1(Σi) and let T � i

stand for the empty word if Ei = ∅ and for T � Σi, otherwise. Note that T � i ∈
�

(Σi). For traces T = (E,C, λ) and T ′ = (E ′,C′, λ′) over Σ̃, let T ·T ′ denote the

concatenation (E ′′,C′′, λ′′) ∈
���

of T and T ′ where E ′′ = E] E ′, λ′′ = λ ∪ λ′,

and C′′ is the cover relation of (C ∪ C′ ∪ {(e, e′) ∈ E ×E ′ | (λ(e), λ(e′)) ∈ D})∗.

It is an easy task to show that trace concatenation is associative. We artificially

add a unit 1 ��� to
���

, which can be seen as the empty trace. Then, (
���
, ·, 1 ���) is

28 Chapter 2. Graphs, Words, Traces, and Pictures

e1

e2 e3

c

a b

b

c

(a) not a trace

b

a c

b

c

(b) a trace

Figure 2.4: A trace over ({a, b}, {b, c})

a monoid, called the trace monoid of (Σ, D), which is mostly identified with
���

.

Note that, in most definitions, we assume a trace to be nonempty. However, it

will be clear how to incorporate 1 ��� , too, which we do silently.

We have already implicitly defined the classes MSO(Σ,−) ��� (Σ̃), RAT ��� (Σ̃), and

REC ��� (Σ̃) of MSO(Σ,−) ��� (Σ̃)-definable, rational, and recognizable trace languages,

respectively. Recall that, as
���

(Σ̃) ⊆
���

(Σ,−), the monadic second-order for-

mulas tailored to traces over Σ̃ are built from the atomic entities

λ(x) = a (for a ∈ Σ) x C y x ∈ X x = y

(where x, y ∈ Var and X ∈ VAR). For their semantics, see the semantics of

MSO(Σ,−).

A rational expression α of
���

is called star-connected if iteration occurs over

sets of connected traces only, i.e., for any subexpression β∗ of α, L(β) is a set

of connected traces. By c-RAT ��� , we denote the set of rational languages that

arise from star-connected rational expressions of
���

. While, in general, REC ���

is strictly contained in RAT ��� [Och95], we obtain equivalence if we restrict to

star-connected rational expressions.

Theorem 2.4.2 ([Och95])

REC ��� = c-RAT ���

Let us now clarify what a regular trace language is, whose definition defers to

recognizability of the corresponding set of linearizations.

Definition 2.4.3 (Regular Trace Language)

A set L ⊆
���

(Σ̃) is called a regular trace language (over Σ̃) if Lin(L) is a regular

word language over Σ, i.e., Lin(L) ∈ REC � (Σ).

2.4. Mazurkiewicz Traces 29

The class of regular trace languages over Σ̃ is denoted by R ��� (Σ̃) or, in accordance

with our convention, simply by R ��� .

Another characterization of trace languages is based on the concept of inference,

which takes into consideration the distributed nature of a system. Formally, we

require a language to be closed under some inference operator `Σ̃. Namely, given

a set L ⊆
���

(Σ̃) and a trace T ∈
���

(Σ̃), we write L `Σ̃ T if the following holds:

∀i ∈ [K] : ∃T ′ ∈ L : T ′ � i = T � i

We are now prepared to define what we mean by a product language.

Definition 2.4.4 ((Weak) Product Trace Language, cf. [Thi95])

A set L ⊆
���

(Σ̃) is called a weak product (trace) language (over Σ̃) if, for any

T ∈
���

(Σ̃), L `Σ̃ T implies T ∈ L. A trace language L ⊆
���

(Σ̃) is called a

product (trace) language (over Σ̃) if it is the finite union of weak product trace

languages.

We denote by P0
��� (Σ̃)

and P ��� (Σ̃) the classes of weak product trace languages and

product trace languages, respectively, and just write P0
��� and P ��� if it seems more

convenient.

Example 2.4.5 Suppose Σ̃ = ({a, b}, {b, c}) and let L consist of all those traces

(E,C, λ) ∈
���

(Σ̃) such that there is e, e′ ∈ E with λ(e) = a, λ(e′) = c, e 6≤ e′,

and e′ 6≤ e. Then, though it is a regular trace language, L is not contained in

P0
��� (Σ̃)

(we will see below that it is not even a product language). Because if we

suppose the trace T1 ∈ L to be given by its projections T1 �1 = ab and T1 �2 = cb,

while T2 ∈ L shall be given by T2 � 1 = ba and T2 � 2 = bc, then we have both

{T1, T2} `Σ̃ abc 6∈ L (witnessed by T1 � 1 and T2 � 2) and {T1, T2} `Σ̃ cba 6∈ L

(witnessed by T1 �2 and T2 �1), which contradicts the definition of a weak product

language.

Let us bring together the concepts of regularity and product behavior.

Definition 2.4.6 (Regular Product Trace Language)

A trace language L ⊆
���

(Σ̃) is called a weak regular product (trace) language

(over Σ̃) if both L ∈ R ��� (Σ̃) and L ∈ P0
��� (Σ̃)

. Moreover, it is said to be a regular

product (trace) language (over Σ̃) if it is the finite union of weak regular product

languages.

The corresponding language classes are denoted by RP 0
��� (Σ̃)

and, respectively,

RP ��� (Σ̃).

30 Chapter 2. Graphs, Words, Traces, and Pictures

2.4.2 Automata for Traces

The distributed nature of traces asks for likewise distributed automata models,

which preferably cover some of the classes proposed in the previous subsection.

Let us start with asynchronous automata, the most general version of automata

for traces that we consider.

Definition 2.4.7 (Asynchronous Automaton [Zie87])

An asynchronous automaton over Σ̃ is a structure A = ((Si)i∈[K], (∆a)a∈Σ, s
in , F)

where

– for each i ∈ [K], Si is a nonempty finite set of (i-)local states,

– for each a ∈ Σ, ∆a ⊆ Sa × Sa is the set of (a-)synchronizing transitions

where Sa := {s ∈
∏

i∈[K](Si] {∗}) | for any i ∈ [K], s[i] = ∗ iff i 6∈ loc(a)},

– sin ∈
∏

i∈[K] Si is the global initial state, and

– F ⊆
∏

i∈[K] Si is the set of global final states.

Example 2.4.8 An asynchronous automaton over ({a, b}, {b, c}) is illustrated

in Figure 2.5 where b-synchronizing transitions are joint by dashed lines. Thus,

∆b contains both ((s0, t0), (s0, t0)) and ((s1, t1), (s1, t1)), while ∆a is given by

{((s0, ∗), (s0, ∗)), ((s0, ∗), (s1, ∗)), ((s1, ∗), (s1, ∗))} and, accordingly, ∆c is given by

{((∗, t0), (∗, t0)), ((∗, t0), (∗, t1)), ((∗, t1), (∗, t1))}.

s0

s1

t0

t1

b
a

b
c

b
a

b
c

a c

A1 : A2 :

Figure 2.5: An asynchronous automaton over ({a, b}, {b, c})

Let A = ((Si)i∈[K], (∆a)a∈Σ, s
in , F) be an asynchronous automaton and let T =

(E,C, λ) ∈
���

be a trace. For a mapping r : E →
⋃

a∈Σ Sa such that, for each

e ∈ E, r(e) ∈ Sλ(e), we define another mapping r− : E →
⋃

a∈Σ Sa by

r−(e)[i] =





sin [i] if e ∈ Ei and e = first(T � i)

r(last((T ↓e)� i))[i] if e ∈ Ei and e 6= first(T � i)

∗ if e 6∈ Ei

2.4. Mazurkiewicz Traces 31

A run of A on T is a mapping r : E →
⋃

a∈Σ Sa with r(e) ∈ Sλ(e) (for each e ∈ E)

such that, for any e ∈ E, (r−(e), r(e)) ∈ ∆λ(e). For i ∈ [K], let fi denote sin [i]

if Ei = ∅ and, otherwise, let fi denote r(last(T � i))[i]. We call r accepting if

(fi)i∈[K] ∈ F . The language of A, {T ∈
���

| there is an accepting run of A on

T}, is denoted by L(A).

b

a c

b

c

(s0, t0)

(s1, ∗) (∗, t1)

(s1, t1)

(∗, t0)

(a) a run r

(sin [1] = s0, t0)

(s0, ∗) (∗, t0)

(s1, t1)

(∗, sin [2] = t0)

(b) the mapping r−

Figure 2.6: An accepting run of an asynchronous automaton

Example 2.4.9 An accepting run r of the asynchronous automaton A from Fig-

ure 2.5 on the trace of Figure 2.4 on page 28 is illustrated in Figure 2.6 (a) where

the structure aside reflects the corresponding mapping r−. One verifies that the

language of A is the set of traces (E,C, λ) ∈
���

({a, b}, {b, c}) such that there is

e, e′ ∈ E with λ(e) = a, λ(e′) = c, e 6≤ e′, and e′ 6≤ e.

By AA(Σ̃) (or simply AA), we denote the class of trace languages that are the

language of some asynchronous automaton over Σ̃.

Theorem 2.4.10 ([Zie87])

REC ��� = R ��� = AA

Zielonka even shows that, for any asynchronous automaton, there is an equivalent

deterministic one, whose definition is omitted here. Basically, for any trace T , a

deterministic asynchronous automaton allows at most one run on T .

Theorem 2.3.3, which states that any regular word language can be defined in

MSO logic and, vice versa, any MSO sentence over words constitutes a regular

word language, carries over to the setting of traces, no matter whether we deal

with the underlying partial order or their Hasse diagrams.

32 Chapter 2. Graphs, Words, Traces, and Pictures

Theorem 2.4.11 (cf. [Tho90, Ebi95])

EMSO ��� = MSO ��� = AA = MSO[≤] ��� = EMSO[≤] ���

Let us compare the expressiveness of some automata models for traces.

Corollary 2.4.12

1-GA ��� = GA ��� = AA

Proof Analogously to the word case, the second equality follows from Theorem

2.2.13 and Theorem 2.4.11. Moreover, one can easily reduce a graph acceptor of

radius R to a graph acceptor of radius 1 involving a blow-up in the number of

states [Tho96]. �

Applying Lemma 2.2.12 to traces, we cannot simply remove the concept of occur-

rence constraints from graph acceptors without losing expressiveness. However,

it turns out that the restriction to weak product languages allows us to abstract

away from occurrence constraints.

Lemma 2.4.13 For any L ∈ P0
��� , we have

L ∈ GA−
��� iff L ∈ GA ��� .

The proof is a simple variant of the more general one for Lemma 4.4.13, which, in

turn, relies on Corollary 4.4.11. Basically, a graph acceptor, according to Corol-

lary 2.4.12, is reduced towards spheres with radius 1. Afterwards, we construct

a special kind of product automaton (as it is defined below), which implements a

threshold counting procedure to simulate the occurrence constraints and subse-

quently allows an easy transformation into a graph acceptor without occurrence

constraints.

So let us turn to (weak) regular product languages and try to find a suitable

automata model that is weaker than the asynchronous one and generates a reg-

ular product language in a natural manner. Synchronizing transitions turn out

to be essential to recognize the language of the automaton from Figure 2.5 on

page 30. Certain product automata lack such a possibility and operate more

autonomously than asynchronous automata do. Though product automata are

similar to asynchronous automata, they are strictly less expressive.

Definition 2.4.14 (Product Automaton)

A product automaton over Σ̃ is a structure A = ((Ai)i∈[K], s
in , F) such that

– for each i ∈ [K], Ai is a pair (Si,∆i) where

2.4. Mazurkiewicz Traces 33

s0

s1

s2

s3

t0

t1

t2

t3

a

b

b c

b

b

A1 : A2 :

Figure 2.7: A product automaton over ({a, b}, {b, c})

• Si is a nonempty finite set of (i-)local states and

• ∆i ⊆ Si × Σi × Si is the set of (i-)local transitions,

– sin ∈
∏

i∈[K] Si is the global initial state, and

– F ⊆
∏

i∈[K] Si is the set of global final states.

A simple finite product automaton over ({a, b}, {b, c}) is illustrated in Figure 2.7

where global final states are depicted by dashed lines.

The behavior of a product automaton is quite similar to the one of an asyn-

chronous automaton but more autonomous. So let A = ((Ai)i∈[K], s
in , F), Ai =

(Si,∆i), be a product automaton over Σ̃ (again, set Sa to be {s ∈
∏

i∈[K](Si]

{∗}) | for any i ∈ [K], s[i] = ∗ iff i 6∈ loc(a)}) and suppose T = (E,C, λ) to be a

trace over Σ̃. A run of A on T is a mapping r : E →
⋃

a∈Σ Sa with r(e) ∈ Sλ(e) (for

each e ∈ E) such that, for any e ∈ E and any i ∈ loc(λ(e)), (r−(e)[i], r(e)[i]) ∈ ∆i

(where r− is defined as above). It remains to clarify when r is accepting. For

i ∈ [K], let fi denote sin [i] if Ei = ∅. Otherwise, let fi denote r(last(T � i))[i].

We call r accepting if (fi)i∈[K] ∈ F . The language of A, {T ∈
���

| there is an

accepting run of A on T}, is denoted by L(A).

By PA(Σ̃) (PA if Σ̃ is clear from the context), we denote the set of trace languages

that is determined by the class of product automata over Σ̃.

Lemma 2.4.15 If there is i, j ∈ [K] such that Σi ∩ Σj 6= ∅ and neither Σi ⊆ Σj

nor Σj ⊆ Σi, then

PA $ AA.

34 Chapter 2. Graphs, Words, Traces, and Pictures

Proof Suppose Σ̃ = ({a, b}, {b, c}) (i.e., K = 2) and L consists of those traces

(E,C, λ) ∈
���

(Σ̃) such that there is e, e′ ∈ E with λ(e) = a, λ(e′) = c, e 6≤ e′,

and e′ 6≤ e. As mentioned above, L is recognized by the asynchronous automaton

illustrated in Figure 2.5 on page 30. Now suppose there is a product automaton

A = ((Ai)i∈[2], s
in , F) over Σ̃ recognizing L. For m,n ∈ IN, consider the trace

T (m,n) ∈
���

(Σ̃), which is given by its linearization bmacbn. If m and n are

sufficiently large, A1, in a successful run of A on T (m,n), goes through a cycle,

say, of length i (≥ 1), to read the first m b’s of the word bmabn. Similarly, A2,

in the same run, goes through a cycle, say of length j (≥ 1), to read the second

n b’s of bmcbn. But then, we can easily construct an accepting run of A on

bmcbi·jabn ∈
���

(Σ̃) \ L, which contradicts the premise. �

Theorem 2.4.16 ([Thi95])

RP ��� = PA

Note that RP0
��� corresponds to the special form of product automata where the

set of global final states is the cartesian product of local state spaces rather than a

subset of the set of global states so that, actually, we deal with a local acceptance

condition. Such correspondence will be studied in more detail in the framework

of message sequence charts.

2.5 Pictures and Grids

An important class of graphs is provided by pictures. Many results on pictures

will be used to achieve the corresponding results in the framework of message

sequence charts. Once more, pictures are a special case of graphs. However,

while the node labeling is arbitrary, an edge of a picture is labeled with either 1

or 2. So let Σ be an alphabet in the following and, given n ∈ IN≥1, [n] denote the

set {1, . . . , n}.

Definition 2.5.1 (Picture)

A picture over Σ is a structure ([n]× [m], S1, S2, λ) ∈
���

H(Σ, {1, 2}) with n,m ∈

IN≥1 where S1, S2 ⊆ ([n]× [m])2 contain the pairs ((i, j), (i+ 1, j)) ∈ ([n]× [m])2

and ((i, j), (i, j+1)) ∈ ([n]×[m])2, respectively, and λ is a mapping [n]×[m] → Σ.

The set of pictures over Σ is denoted by � (Σ) (� if Σ is clear from the context).

Note that, in the context of pictures, we use S1 and S2 rather than C1 and C2

to denote the edge relations, respectively, because this is more common. For

example, Figure 2.8 on the facing page shows a picture over {a, b, c} with n = 3

2.5. Pictures and Grids 35

rows and m = 8 columns. In addition, the vertical arrows are labeled with 1

while the horizontal ones are labeled with 2, which is omitted here for the sake

of clarity.

a

b

b

b

a

b

a

b

b

c

c

c

b

a

b

a

b

b

a

b

b

b

a

b

Figure 2.8: A picture over {a, b, c}

Though tiling systems, where a tiling is a square of length two rather than a graph

around a center (see [GRST96] for an overview), is arguably the more natural

automata model for pictures, we stick to the familiar terrain of graph acceptors.

As with traces, graph acceptors yield different results than the general case, when

they are applied to pictures rather than arbitrary graphs.

Lemma 2.5.2 ([Tho96])

1-GA−�
(Σ) = GA

�

(Σ)

Again, the proof is a simple reduction involving a blow-up in the number of states

of the graph acceptor.

Theorem 2.5.3 ([Tho96]) In general, FO[≤]
�

(Σ) and EMSO
�

(Σ) are incom-

parable wrt. inclusion.

Proof Let Σ = {a, b, c}. The set L of pictures over Σ that consist of one single

column of even length is EMSO
�

(Σ)-definable. But as the set of words over Σ of

even length is not FO[≤] � (Σ)-definable, L cannot be FO[≤]
�

(Σ)-definable.

Conversely, assume L ⊆ � (Σ) to be the set of pictures over Σ that can be con-

sidered as the concatenation GCH of some picture C ∈ � ({c}) consisting of

one single c-labeled column and pictures G,H ∈ � ({a, b}) such that the sets

of different column labelings of G and H coincide. A picture that belongs to

L is depicted in Figure 2.8. Its unique division into G, C, and H as postu-

lated above and illustrated in Figure 2.9 on the following page gives rise to the

set of column words {abb, bab}, which represents both G and H. In fact, L is

36 Chapter 2. Graphs, Words, Traces, and Pictures

a

b

b

b

a

b

a

b

b

c

c

c

b

a

b

a

b

b

a

b

b

b

a

b

Figure 2.9: Dividing a picture over {a, b, c}

FO[≤]
�

(Σ)-definable. A corresponding sentence just has to require that, for any

event x on the first row, there has to be a suitable counterpart y that is also

located on the first row, but on the opposite side of the c-labeled column. More-

over, the columns below x and y have to coincide. The latter can be easily

formalized using the predicates ≤1 and ≤2 (with the obvious meaning, i.e., ≤2

stands for proceeding from left to right), which, in turn, are definable only in

terms of ≤. However, L cannot be EMSO
�

(Σ)-definable. Because, if we suppose

L ∈ EMSO
�

(Σ), then, according to Theorem 2.2.13 and Lemma 2.5.2, there is

a graph acceptor B = (Q,R,S,Occ) over (Σ, {1, 2}) such that R = 1, Occ is

logically equivalent to true, and L
�

(Σ)(B) = L. In any accepting run of B on a

picture GCH, all the information carried from G to H is already present in the

sequence of states associated to the single column C. For a given column length

n, the number of those state sequences is |Q|n. In contrast, the number of distinct

nonempty sets of words over {a, b} of length n is 22n

− 1 and, therefore, exceeds

|Q|n for sufficiently large n. So we can find an accepting run on G′CH ′ for some

G′, H ′ ∈ � ({a, b}) that induce different sets of column words. �

A special case of a picture is given if Σ is a singleton, which allows us to omit the

labeling function. We then rather speak of a grid. Given n,m ∈ IN≥1, the (n,m)-

grid (with n rows and m columns) is the structure G(n,m) := ([n]× [m], S1, S2) ∈
���

H(−, {1, 2}) where, as in the picture case, S1, S2 ⊆ ([n]×[m])2 contain the pairs

((i, j), (i + 1, j)) ∈ ([n] × [m])2 and ((i, j), (i, j + 1)) ∈ ([n] × [m])2, respectively.

By
� �

, we denote the set of all grids. The (3,5)-grid is depicted in Figure 2.10 on

the next page. A relation R ⊆ IN≥1 × IN≥1 may be represented by the grid

language {G(n,m) | (n,m) ∈ R}. As a unary function f : IN≥1 → IN≥1 can be

considered as a binary relation, we define the grid language G(f) of f to be the

set {G(n, f(n)) | n ∈ IN≥1}.

2.5. Pictures and Grids 37

Figure 2.10: The (3,5)-grid

By means of grids, Matz and Thomas showed that quantifier alternation of

second-order variables in MSO logic over graphs forms an infinite hierarchy.

Theorem 2.5.4 ([MT97]) The monadic quantifier-alternation hierarchy over
� �

is infinite.

The next result directly follows from Lemma 2.5.2. Again, the proof is a simple

reduction involving a blow-up in the number of states of the graph acceptor.

Corollary 2.5.5

1-GA−
� � = GA � �

Though, wrt. grids, already 1-spheres suffice to give graph acceptors the full

expressive power, grids are the starting point to prove that, in general, one cannot

restrict to 1-spheres (recall Lemma 2.2.11). This fact is witnessed by the set

Ln of n-supergrids for some n ≥ 4 (cf. [Tho96]). From a grid, we obtain the

corresponding n-supergrid if any edge is replaced by a sequence of n new edges.

Such a sequence is called a superedge. Relative to
���

(−, {1, 2}), Ln can be

recognized by some graph acceptor equipped with 2n-spheres. But now suppose

there is a graph acceptor B with radius 1 such that L ��� (B) = Ln and consider

ρ to be an accepting run of B on some G ∈ Ln. If G is chosen to be large

enough, then ρ might exhibit two occurrences of the same 1-sphere whose nodes

do not touch the end of a superedge and are not related in some way wrt. the

partial order induced by G. Moreover, suppose the nodes of G that belong to the

corresponding two sphere centers to be e1 and e2 and assume that their (only)

outgoing edges lead to e′1 and e′2, respectively. From G, we obtain another grid

if we remove the edges (e1, e
′
1) and (e2, e

′
2) and, instead, add (e1, e

′
2) and (e2, e

′
1).

The resulting grid, though it is contained in
���

and in L ��� (B), is no longer a

supergrid.

Chapter 3

Message Sequence Charts

One of the first papers aiming at giving message sequence charts (MSCs) a formal

semantics was [Mau96], which described the behavior of an MSC in a process

algebra. To make MSCs accessible to automata theory and logics, however, it

pays off to consider an MSC to be a partial order [KL98] or a graph [BAL97],

whose entities are handled by automata more naturally. Let us now formally

introduce MSCs, which can be seamlessly embedded into the framework provided

in Chapter 2.

3.1 Message Sequence Charts

Forthcoming definitions are all made wrt. a fixed finite set P of at least two

processes. (Note that, however, in proofs, we sometimes silently assume the

existence of more than two processes.) We denote by Ch(P) the set {(p, q) |

p, q ∈ P, p 6= q} of reliable FIFO channels. Thus, a message exchange is allowed

between distinct processes only. Let Act !(P) denote the set {p!q | (p, q) ∈ Ch(P)}

of send actions while Act ?(P) denotes the set {q?p | (p, q) ∈ Ch(P)} of receive

actions. Hereby, p!q and q?p are to be read as p sends a message to q and q

receives a message from p, respectively. They are related in the sense that they

will label communicating events of an MSC, which are joint by a message arrow

in its graphical representation. Accordingly, we set Com(P) := {(p!q, q?p) |

(p, q) ∈ Ch(P)} and, for some distinct p, q, Com(P)(p,q) := {(p!q, q?p)}. Observe

that an action pθq (θ ∈ {!, ?}) is performed by process p, which is indicated by

P (pθq) = p. We let Act(P) stand for the union of Act !(P) and Act ?(P) and, for

p ∈ P , set Act(P)p to be the set {σ ∈ Act(P) | P (σ) = p}. Moreover, we use Pc

as a shorthand for the set P] {c} (the symbol c will be subsequently used to

label message arrows in an MSC, while a process will label the successor relation

40 Chapter 3. Message Sequence Charts

of the corresponding process line). If P is clear from the context (which is often

the case), we take the liberty of omitting the reference to P and just write Ch,

Act !, Act ?, Act , and Com, for example.

An MSC will be defined stepwise, starting with partial MSCs, where some events

may lack a suitable communication partner. This view is concretized towards

left-closed MSCs, which allow at most unmatched send events, while, finally, a

basic MSC describes a complete behavior without any open events.

Definition 3.1.1 (Partial Message Sequence Chart)

A partial message sequence chart (over P) is a graph (E, {Cp}p∈P ,Cc, λ) ∈
���

(Act , Pc) such that

– Cp is the covering relation of some total order on Ep := λ−1(Actp)

(recall that this total order is then denoted by ≤p),

– Cc ⊆ E × E such that, for any (e1, e
′
1), (e2, e

′
2) ∈ Cc,

• (λ(e1), λ(e′1)) ∈ Com and

• if (λ(e1), λ(e′1)) = (λ(e2), λ(e′2)) ∈ Com(p,q) for some (p, q) ∈ Ch, then

e1 <p e2 iff e′1 <q e
′
2.

Recall that λ is a labeling function of type E → Act and C∗ = (Cc ∪
⋃

p∈P Cp)
∗

is required to be a partial order. Moreover, E is a nonempty finite set, whose

elements are called events. Events on one and the same process line are totally

ordered and events on distinct process lines that are immediately concerned with

each other (wrt. Cc) are labeled with actions related by Com. Given e ∈ E,

P (e) will subsequently serve as a shorthand for P (λ(e)). The definition of a

partial MSC guarantees that completed message transfers, which correspond to

elements from Cc, are processed along a FIFO architecture. However, there

might still be unmatched events. So let us identify events of a partial MSC

M = (E, {Cp}p∈P ,Cc, λ) that either have no communication partner yet or just

lack a link to an existing partner and let accordingly UM denote the set {e ∈ E |

there is no e′ ∈ E such that e Cc e
′ or e′ Cc e} of unmatched events of M .

Definition 3.1.2 (Left-Closed Partial Message Sequence Chart)

A partial MSC M is called left-closed if λ(UM) ⊆ Act !.

In other words, a left-closed partial MSC has no unmatched receive events. In an

MSC, finally, any event is part of a full message exchange:

Definition 3.1.3 (Message Sequence Chart)

A message sequence chart is a partial MSC M such that UM = ∅.

3.1. Message Sequence Charts 41

The set of partial MSCs over P is denoted by p
�����

(P), the set of MSCs by
�����

(P). The members of
�����

(P) are often called basic MSCs. When P will be

clear from the context, a corresponding reference is often omitted. Recall that

p
�����

(P) ⊆
���

(Act(P), Pc). An MSC language over P is a subset of
�����

(P).

The class 2
�����

(P) of all those MSC languages over P is denoted by MSC(P) or

just MSC.

To be able to apply the theory of graph acceptors and, in particular, Theorem

2.2.13, the following remark will prove important.

Remark 3.1.4
�����

has bounded degree.

In fact, the degree of
�����

is bounded by 3.

Given a partial MSC M = (E, {Cp}p∈P ,Cc, λ), we might argue that some pair

of unmatched events can be combined towards a complete message. Following

this idea, we define a relation Ĉc ⊆ E×E, which accordingly relates events from

UM . Intuitively, they are queued into a FIFO channel. For e, e′ ∈ E, we formally

write e Ĉc e
′ if, for some channel (p, q) ∈ Ch,

– {e, e′} ⊆ UM ,

– (λ(e), λ(e′)) ∈ Com(p,q),

– |{e′′ ∈ Ep ∩ UM | e′′ ≤p e and λ(e′′) = p!q}| =

|{e′′ ∈ Eq ∩ UM | e′′ ≤q e
′ and λ(e′′) = q?p}|, and

– for any (e1, e
′
1) ∈ Cc with (λ(e1), λ(e′1)) ∈ Com(p,q), e <p e1 iff e′ <q e

′
1.

Observe that, if (C ∪ Ĉc)
∗ is antisymmetric, then (E, {Cp}p∈P ,Cc ∪ Ĉc, λ)

is a partial MSC, which can be understood as the adjustment of M along the

FIFO architecture. In that case, we say that M represents the partial MSC

(E, {Cp}p∈P ,Cc ∪ Ĉc, λ).

Summarizing, we model an MSC as a graph, adopting the view taken in [Mad01,

LL95, BAL97] rather than considering partial orders [HMKT00a, Mor02, Kus03].

As we will discuss in more detail, this does not affect our main results. Note

that, though we consider partial MSCs with possibly unmatched events, a system

description or an implementation of a system is designed for complete message

transfer in this thesis, i.e., partial MSCs will be combined here towards basic

MSCs. A method to cope with messages that are found or definitely lost, which

are supplied by the MSC standard, is provided in [BLL02].

An MSC is depicted in part (b) of Figure 3.1 on the following page. However,

to illustrate an MSC, we mostly represent it by a diagram such as shown in

42 Chapter 3. Message Sequence Charts

1 2 3
1

1

2

2

2

3

3

c

c

c

c

c

1!2

1!2

1!3

2?1

2!3

2?1

2?3

3?2

3?1

3!2

(a) (b)

Figure 3.1: An MSC

1 2

2 1

2

1

1

1 2

1

1 2

2

2

1 2

(a) (b) (c) (d)

Figure 3.2: Three sample partial MSCs

Figure 3.1 (a), which is more intuitive and provides enough information to infer

the corresponding graph. This example shows that it would be too restrictive if

we confined ourselves to graphs from
���

H(Act , Pc), as the edge representing the

second message from process 1 to process 2 is already implicitly present. If, in

general, we deal with partial MSCs, we indicate an unmatched event as illustrated

by Figure 3.2 showing two partial MSCs that are not left-closed (a,b), a left-closed

partial MSC that is not an MSC (c), and an MSC (d). Hereby, the labeling of an

unmatched event indicates the desired communication partner. Recall that the

partial MSC from Figure 3.2 (a) represents the one from Figure 3.2 (b).

For a partial MSC M = (E, {Cp}p∈P ,Cc, λ) and a process p ∈ P , the projection

of M onto p, denoted by M � p, is defined to be the empty word if Ep = ∅ and,

otherwise, to be M � (Act p, {p}), which is identical to (Ep,Cp, λ|Ep
) ∈

�
(Act p).

Note that an MSC M is uniquely determined by the collection (M � p)p∈P of its

projections, which is obviously not the case if we consider partial MSCs.

3.2. Universal and Existential Bounds 43

Given two partial MSCs M = (E, {Cp}p∈P ,Cc, λ) andM ′ = (E ′, {C′
p}p∈P ,C

′
c, λ

′),

let M ·M ′ := (E ′′, {C′′
p}p∈P ,C

′′
c , λ

′′) be the (asynchronous) concatenation of M

and M ′ where E ′′ = E] E ′, λ′′ = λ ∪ λ′, C′′
c = Cc ∪ C′

c, and, for any p ∈ P ,

C′′
p = Cp ∪ C′

p ∪ {(e, e′) ∈ Ep × E ′
p | e = last(M � p) and e′ = first(M ′ � p)}.

Note that asynchronous concatenation is associative. As with traces, we add

some unit MSC 1 ��� � to p
�����

and
�����

(which can be assumed to be kind of

empty (partial) MSC where any component is the empty set) and obtain the

monoids (p
�����

, ·, 1 ��� �) and (
�����

, ·, 1 ��� �), which we identify with p
�����

and
�����

, respectively. Even if, for simplicity, most definitions (such as message-

passing automata) are designed for nonempty MSCs only, we will include them

implicitly and it will be clear how to extend definitions to cope with 1 ��� � as well.

Remark 3.1.5 Both p
�����

and
�����

are not finitely-generated.

For a partial MSC M = (E, {Cp}p∈P ,Cc, λ) ∈ p
�����

, we define the commu-

nication graph of M , denoted by cG(M), to be the pair (P (M),Arcs) where

P (M) := {P (e) | e ∈ E} and, for any p, q ∈ P (M), (p, q) ∈ Arcs if there are

e, e′ ∈ E such that (λ(e), λ(e′)) ∈ Com(p,q) [GKM04]. Remarkably, if M is a

basic MSC, then M is connected iff cG(M) is connected, which does not hold

for partial MSCs in general. Figure 3.3 on the following page shows a connected

MSC and its communication graph. Note that a basic MSC over at most three

processes is always connected, which does not apply to partial MSCs.

3.2 Universal and Existential Bounds

An important subclass of
�����

is identified when we focus on bounded MSCs,

which cope with systems whose channel capacity is restricted. Those systems

turn out to have simpler, more liberal logical characterizations than their unre-

stricted counterparts and, furthermore, enjoy some nice algorithmic properties

(see [Gen04] for an overview). In general, we distinguish two kinds of bounded-

ness. If we require any execution of an MSC (by which we mean a linear extension)

to correspond to a fixed channel capacity, we will speak of a universally-bounded

MSC [HMKT00a]. If, in contrast, we require at least one linearization to fit into

the channel restriction, we call an MSC existentially-bounded [LM04]. While

regularity gives rise to universally-bounded MSC languages, an existential bound

suffices to ensure decidability of some model-checking problems such as the prob-

lem whether an MSO formula satisfies a given high-level MSC (see section 3.5)

[Mad01, MM01].

Let B ≥ 1. As we define boundedness in terms of linear extensions of MSCs,

44 Chapter 3. Message Sequence Charts

1 2 3 4 1 2

3

(a) (b)

Figure 3.3: A connected MSC and its communication graph

we first call a word w ∈
�

(Act) B-bounded if, for any prefix v of w and any

(p, q) ∈ Ch, |v|p!q − |v|q?p ≤ B. An MSC M ∈
�����

is called

– universally-B-bounded (∀B-bounded) if, for any w ∈ Lin(M), w is B-

bounded and

– existentially-B-bounded (∃B-bounded) if there is at least one w ∈ Lin(M)

such that w is B-bounded.

In other words, universal boundedness is safe in the sense that any possible ex-

ecution sequence does not claim more memory than some given upper bound,

whereas existential boundedness allows an MSC to be executed even if this does

not apply to each of its linear extensions.

Example 3.2.1 The MSC depicted in part (a) of Figure 3.4 on the next page is

∀2-bounded because, at any time of execution, there are at most two messages

in each channel: consider process 1, which sends a message to process 2, then

receives some message and, again, sends a message to its opponent. At that time,

there might be two messages in channel (1, 2). However, before process 1 is able

to complete its process line by sending a third message, it has to receive a second

message from process 2, which, in turn, is required to take at least one message

from (1, 2). As process 1 can potentially send its second message without awaiting

collection of the first one by process 2, the MSC is not ∀1-bounded. The MSC

depicted in Figure 3.4 (b) is ∃1-bounded: its linearization ((1!2)(2?1))4 makes

use of only one location in channel (1, 2). Moreover, it is ∀B-bounded iff B ≥ 4.

Given some natural B ≥ 1, the set of ∀B-/∃B-bounded MSCs is denoted by
�����

∀B/
�����

∃B, respectively. An MSC language L ⊆
�����

is called ∀B-/∃B-

bounded if, for any M ∈ L, M is ∀B-/∃B-bounded. Moreover, we call L

universally-/existentially-bounded (∀-/∃-bounded) if it is ∀B-/∃B-bounded for

some B.

3.3. Relationships to Mazurkiewicz Traces 45

1 2
1 2

(a) (b)

Figure 3.4: A ∀2-bounded and an ∃1-bounded MSC

3.3 Relationships to Mazurkiewicz Traces

We recall two approaches to bridge the gap between traces and MSCs. The

one is tailored to universally-bounded MSC languages [Kus03] and applies some

relabeling to the events of an MSC to obtain a trace, while the other, basically

considering several events of an MSC to be an event of a trace, is likewise applic-

able to unbounded behaviors [Mor02].

3.3.1 The Counting Lemma

In the following, let B be a positive natural. We define DB to be the dependence

alphabet (Act × {1, . . . , B}, DB) where (σ1, n1)DB(σ2, n2) if

– P (σ1) = P (σ2) or

– (σ1, σ2) ∈ Com ∪ Com−1 and n1 = n2.

Note that, though the definitions from this subsection each depend on P , we

omit a corresponding reference. Setting Co to be {(σ, τ, n) | (σ, τ) ∈ Com, n ∈

{1, . . . , B}}, let Σ̃B be the distributed alphabet (Act γ)γ∈P∪Co where, for p ∈ P ,

Actp := Actp × {1, . . . , B} and, for (σ, τ, n) ∈ Co, Act (σ,τ,n) := {(σ, n), (τ, n)}.

For example, if P = {1, 2} and B = 2,

Σ̃B = ({(1!2, 1), (1?2, 1), (1!2, 2), (1?2, 2)},

{(2!1, 1), (2?1, 1), (2!1, 2), (2?1, 2)},

{(1!2, 1), (2?1, 1)},

{(1!2, 2), (2?1, 2)}).

46 Chapter 3. Message Sequence Charts

Remark 3.3.1 Given B ≥ 1, DΣ̃B
= DB.

To an MSC M = (E, {Cp}p∈P ,Cc, λ) ∈
�����

∀B, we assign the graph TrB(M) :=

(E ′,C′, λ′) ∈
���

H(Act ×{1, . . . , B},−) where E ′ = E, C′ is the covering relation

of (Cc ∪
⋃

p∈P Cp)
∗, and, for each e ∈ E, we define λ′(e) to be the new labeling

(λ(e), |M ⇓e|λ(e) mod B).

Lemma 3.3.2 ([Kus03]) Let B ≥ 1. For each MSC M ∈
�����

∀B, TrB(M) is a

trace over Σ̃B.

Note that the mapping TrB :
�����

∀B →
���

(Σ̃B) is injective. It is canonically

extended towards MSC languages. Thus, involving some relabeling, an MSC

language L ⊆
�����

∀B can be converted into some trace language TrB(L) ⊆
���

(Σ̃B).

Example 3.3.3 Taking M ∈
�����

∀2 to be the MSC from Figure 3.4 (a), the

trace Tr2(M) over Σ̃2 is shown in Figure 3.5. Note that, in fact, the labelings of

the events e and e′, which are incompatible wrt. ≤, are independent as they do

not occur together in some local alphabet of Σ̃2.

e

e′

(1!2, 1)

(1?2, 1)

(1!2, 2)

(1?2, 2)

(1!2, 1)

(2!1, 1)

(2?1, 1)

(2!1, 2)

(2?1, 2)

(2?1, 1)

Figure 3.5: The trace of a 2-bounded MSC

Note that, in [Gen04], the above relabeling is applied to existentially-bounded

MSCs, too, which gives also rise to Mazurkiewicz traces if we add some edges

between events that are actually independent in the MSC.

3.3.2 Prime Partial Message Sequence Charts

For a partial MSC M with labeling function λ, let again P (M) be a shortcut

for {p ∈ P | λ−1(Actp) 6= ∅}. A nonempty partial MSC M is called prime

if M = M1 · M2 implies M1 = 1 ��� � or M2 = 1 ��� � . Consider Figure 3.6 for

3.4. Message Contents 47

1 2

2

1 2

2

1

1 2 1 2

(a) (b) (c) (d)

Figure 3.6: Some prime and some non-prime partial MSCs

examples. The partial MSCs from parts (a) and (d) are prime, while the partial

MSCs in between are not. For the rest of this subsection, let Γ be a nonempty

finite set of prime partial MSCs, which will be the universe of a trace alphabet.

The notion of prime partial MSCs, which was first given in [HM00], gives rise to

a natural dependence relation based on the distributed alphabet Σ̃Γ := (Σp)p∈P

where, for any p ∈ P , Σp = {M ∈ Γ | p ∈ P (M)}. We may accordingly declare

prime partial MSCs M and M ′ independent if P (M) ∩ P (M ′) = ∅.

Lemma 3.3.4 The morphism RΓ :
���

(Σ̃Γ) → 〈Γ〉p ��� � that maps a trace over

Σ̃Γ with linearization a1 . . . an onto the partial MSC a1 · . . . ·an is an isomorphism.

The proof is an adaption of a similar one in [Mor02] where the corresponding is

shown for basic MSCs rather than partial MSCs.

A basic MSC may correspond to several traces, i.e., there might be distinct traces

T1, T2 ∈
���

(Σ̃Γ) such that RΓ(T1) and RΓ(T2) represent the same MSC. This

applies, for example, to the traces from Figure 3.7: though they are different,

they represent one and the same basic MSC. However, in our main application

of prime partial MSCs in Chapter 5, those traces are not distinguished anyway.

3.4 Message Contents

So far, we did not consider which message is actually sent performing a send event.

To enrich our formalism that way, we augment each action with an additional

labeling indicating what kind of message is sent or received. Accordingly, an MSC

is defined wrt. P and a nonempty finite set of message contents Λ. An action from

Act !(P,Λ) is henceforth a symbol p!aq, which indicates that a message a ∈ Λ is

sent from process p to process q, and an action from Act ?(P,Λ) is a symbol q?ap,

which represents the complementary action of receiving a so that we will write

(p!aq, q?ap) ∈ Com(P,Λ) or, more specifically, (p!aq, q?ap) ∈ Com(P,Λ)(p,q). As

48 Chapter 3. Message Sequence Charts

1 2

1 2

2

1 2

1

1 2

1 2

1 2

1 2

T1 : T2 :

Figure 3.7: Two trace representations of one basic MSC

usual, the union of Act !(P,Λ) and Act ?(P,Λ) is denoted by Act(P,Λ). However,

there is some scope for the canonical extension of the definition of an MSC and

we consider the following definition to be a starting point. Let us define MSCs

directly without going via partial MSCs first.

Definition 3.4.1 (extends Definition 3.1.3)

A message sequence chart over (P,Λ) is a structure M = (E, {Cp}p∈P ,Cc, λ)

from ��� (Act(P,Λ), Pc) such that

– Cp is the covering relation of some total order ≤p on λ−1(Act(P,Λ)p) (where

Act(P,Λ)p is defined in the obvious manner),

– Cc ⊆ E×E such that, for any e, e′ ∈ E, e Cc e
′ iff (λ(e), λ(e′)) ∈ Com(P,Λ)

and |M ⇓e|λ(e) = |M ⇓e′|λ(e′), and

– |M |p!aq = |M |q?ap for any (p, q) ∈ Ch and a ∈ Λ.

If we left this definition as it currently stands, we would allow non-FIFO behavior

as depicted in Figure 3.8 on the next page where messages of different type

overtake each other in channel (1, 2). Such a communication model is considered

in [Mor02, Loh03, BM03]. Fortunately, though overtaking occurs, one can then

still uniquely determine an MSC on the basis of a linearization or a collection

of projections. This is no longer true if reversals between identical messages are

3.5. High-Level Message Sequence Charts 49

allowed. In [BLN02], it is shown how to relate MSCs and their linearizations even

in the that case, which, though it is called degenerate in [AEY00], is explicitly

provided by the MSC standard.

For (p, q) ∈ Ch, let Act !(P,Λ)(p,q) denote the set {p!aq | a ∈ Λ} and, accordingly,

Act ?(P,Λ)(p,q) denote {q?ap | a ∈ Λ}. If we still wish an MSC M to behave

in a FIFO manner, we consequently require that, for any e, e′ ∈ E, e Cc e
′ iff,

for some p and q, we have both (λ(e), λ(e′)) ∈ Com(P,Λ)(p,q) and, moreover,

|M ⇓ e|
Act

!(P,Λ)(p,q)
= |M ⇓ e′|

Act
?(P,Λ)(p,q)

. Then, for any p, q ∈ P , e1, e2 ∈ Ep, and

e′1, e
′
2 ∈ Eq with both e1 Cc e

′
1 and e2 Cc e

′
2, it holds e1 ≤p e2 iff e′1 ≤q e

′
2.

1?a2

1!a2

1!b2

2!a1

2?b1

2?a1

Figure 3.8: MSC with non-FIFO behavior

It remains to clarify what we understand by ∀B-/∃B-boundedness for some B ≥

1, which just defers to the definition of a B-bounded word over Act(P,Λ). So let

us henceforth call a word w ∈
�

(Act(P,Λ)) ∀B-/∃B-bounded if, for any prefix v

of w and any (p, q) ∈ Ch,

(∑

a∈Λ

|v|p!aq

)
−

(∑

a∈Λ

|v|q?ap

)
≤ B.

Whenever we refer to MSCs over (P,Λ), we just write
�����

(P,Λ).

We would like to stress that, though we abstract from concrete messages in the

following and almost exclusively consider MSCs over P , all the results of this

thesis also hold in the scope of
�����

over (P,Λ) and corresponding logics and

automata, whose definition proceeds as anticipated.

3.5 High-Level Message Sequence Charts

Usually, a system designer wants a specification or an implementation to comprise

many scenarios, which gives rise to an MSC language. In the following sections,

we recall several rather algebraic characterizations of MSC languages, starting

50 Chapter 3. Message Sequence Charts

with high-level MSCs, a high-level construct, whose standard description of the

norm Z.120 allows nondeterministic choice, concatenation, and iteration of MSCs

for conveniently specifying possibly infinite sets of MSCs. Then, regular languages

characterize sets of MSCs that, in some sense, are realizable and whose definition,

though algebraically established, rather stems from a state-based implementation

point of view. Other formalisms introduced in the rest of this chapter are product

languages, which are closed under some independence operator an implementation

might be based on, and EMSO-definable MSC languages, which will turn out to

be the logical counterpart of our most general finite model of an implementation.

Let us focus on high-level descriptions in this section, which are needed to combine

MSCs and describe possibly infinitely many scenarios in a compact manner. In

high-level MSCs, the central combination operator will be concatenation. Recall

that we focus on asynchronous or weak concatenation, i.e., the only restriction on

the order of events in the product of MSCs M and M ′ is that, for any process line,

events of M precede events of M ′, while other events remain unordered unless

they are otherwise causally ordered.

When introducing high-level descriptions, we come from their most general case.

In our framework, partial MSCs correspond to what is commonly known as com-

positionality, which was introduced in [GMP01]. Compositional high-level con-

structions allow for the modeling of more complex systems than their simpler

variant, particularly featuring MSC languages that are not finitely-generated.

Basically, a high-level compositional MSC is a rational expression of p
�����

whose

language, though consisting of partial MSCs, can be understood as a basic MSC

language if previously unmatched events are combined along a FIFO architecture.

Definition 3.5.1 (High-Level Compositional MSC, cf. [GMP01])

A high-level compositional MSC (HcMSC) (over P) is a rational expression of

p
�����

(P).

For readability, we omit henceforth any reference to P in this section. But note

that the following definitions still depend on P .

In contrast to [GMP01] and rather following [Mor02], our approach to high-level

(compositional) MSCs is algebraically motivated and, based on the idea of prime

MSCs, allows to relate the corresponding MSC languages to trace theory. More-

over, we follow the approach adopted in [AEY01, HMKT00b, Mad01, MKS00],

where high-level MSCs are flattened into message sequence graphs.

The MSC language of an HcMSC H, which we denote by L(H), is defined to

be the set {M ′ ∈
�����

| M ′ is represented by some M ∈ L(H)} (recall that, in

contrast, L(H) is primarily a set of partial MSCs). If we say that HcMSCs H

and H′ are equivalent, we actually mean L(H) = L(H′) in the following.

3.5. High-Level Message Sequence Charts 51

An HcMSC might be seen as a structure H = (V,R, vin , V f , µ) where V is the

nonempty finite set of nodes, R ⊆ V × V is the set of transitions, vin ∈ V is the

initial node, V f ⊆ V is the set of final nodes, and µ is a mapping V → p
�����

.

An execution of H is henceforth a sequence v0 . . . vn ∈ V + of nodes such that

v0 = vin and (vi, vi+1) ∈ R for any i ∈ {0, . . . , n − 1}. It is called accepting if,

moreover, vn ∈ V f . An execution ρ = v0 . . . vn of H gives rise to the partial

MSC M(ρ) := µ(v0) · . . . · µ(vn). Then, the language L(H) can be defined to

be {M(ρ) | ρ is an accepting execution of H}. Observe that this view of an

HcMSC is equivalent to the one proposed before. Some HcMSCs are depicted in

Figure 3.11 on page 54, while Example 3.5.5 on the next page will make use of

their representation as rational expressions.

Definition 3.5.2 (Safe and Left-Closed HcMSC)

An HcMSC H is called

– safe if any M ∈ L(H) represents some basic MSC and

– left-closed if, for any execution ρ of H (accordingly defined for rational

expressions), M(ρ) represents some left-closed partial MSC.

It is easy to show that any left-closed HcMSC is equivalent to some safe and left-

closed HcMSC. Note that, in [GMP01], left-closed HcMSCs are called realizable.

Many interesting properties are undecidable for sets of MSCs formalized by those

high-level descriptions. Inspired by the notion of a star-connected rational ex-

pression in the theory of Mazurkiewicz traces, the more restrictive but useful

notion of global cooperation in high-level MSCs was introduced independently in

[Mor02] and [GMSZ02] and extended to HcMSCs in [GKM04].

Definition 3.5.3 (Globally-Cooperative HcMSC)

An HcMSC is called globally-cooperative (gc-HcMSC) if iteration occurs over sets

of connected partial MSCs only.

Note that, actually, [GKM04] makes use of a different notion of global cooper-

ativity, which is more general in the context of safe HcMSCs and requires that

iteration occurs over sets of partial MSCs with connected communication graph.

However, in the special case of HMSCs, which are defined as follows, their con-

dition captures exactly the same expressions as our notion.

Definition 3.5.4 (High-Level Message Sequence Chart)

A high-level message sequence chart (HMSC) is an HcMSC that is built from

MSCs only, i.e., it is a rational expression of
�����

.

52 Chapter 3. Message Sequence Charts

1 2

2

A :

1 2 3

B :

1 2

1

C :

1 2

2

D :

1 2 3

E :

1 2

1

F :

1 2

G :

1 2

H :

3 4

I :

Figure 3.9: The building blocks of HcMSCs

Thus, an HMSC is trivially safe and left-closed. Moreover, the MSC language

L(H) = L(H) of some HMSC H is finitely generated. Thus, HMSCs are in

general not capable of defining the MSC language of the HcMSC Ha depicted in

Figure 3.11 on page 54, which defines MSCs in the style of Ma from Figure 3.10.

1 2 3

Ma

1 2

Mb 1 2 3

Mc

Figure 3.10: The basic MSC languages of some gc-HcMSCs

Example 3.5.5 Consider the partial MSCs from Figure 3.9 and the following

HcMSCs, whose graphs (which are not unique, of course) are illustrated in Fig-

ure 3.11 on page 54.

a) The gc-HcMSC Ha = A+ · B · C+, whose basic MSC language features,

among others, the basic MSC Ma from Figure 3.10, is neither safe nor left-

closed.

b) The gc-HcMSC Hb = A+ · F+ ·D+ · C+ is also neither safe nor left-closed.

3.5. High-Level Message Sequence Charts 53

It defines the basic MSC language whose basic MSCs look like Mb from

Figure 3.10.

c) Hc = C ·E+ ·A is a safe, though not left-closed, gc-HcMSC, which defines

the set of basic MSCs in the style of Mc from Figure 3.10. Note that there

is no left-closed HcMSC equivalent to Hc.

d) Hd = A ·B+ · C is a gc-HcMSC, which is both safe and left-closed.

e) Finally, He = G · ((H · G) + (I · G))∗ is an HMSC, as it is composed of

MSCs only. However, He is not globally-cooperative and has no equivalent

gc-HcMSC counterpart either.

Note that Ha and Hb are both not equivalent to some safe gc-HcMSC. But even

if Ha is not safe, it is a natural specification, generating a quite simple MSC

language. Having in mind Ha, the system designer is usually unconcerned about

the channel architecture and does not care if, in every run of its specification,

the number of sends equals the number of receives. In fact, this is the job of

the channel architecture of an implementation, which justifies that we consider

HcMSCs in their most general form.

Let us define the language classes associated with HcMSCs and their restrictions.

We set

– HcMSC := {L ⊆
�����

| L = L(H) for some HcMSC H},

– gc-HcMSC := {L ⊆
�����

| L = L(H) for some gc-HcMSC H},

– safe-gc-HcMSC := {L ⊆
�����

| L = L(H) for some safe gc-HcMSC H},

– left-closed-gc-HcMSC := {L ⊆
�����

| L = L(H) for some left-closed gc-

HcMSC H},

– HMSC := {L ⊆
�����

| L = L(H) for some HMSC H}, and

– gc-HMSC := {L ⊆
�����

| L = L(H) for some gc-HMSC H}.

Note that we have HMSC = RAT ��� � , as any HMSC is a rational expression of
�����

.

Proposition 3.5.6 The classes of HcMSCs form the hierarchy depicted in Fig-

ure 3.12 on page 55. The hierarchy is strict.

54 Chapter 3. Message Sequence Charts

1 2 3

2

1 2 3

1 2 3

1

Ha :

1 2 3

1

1 2 3

1 2 3

2

Hc :

1 2 3

2

1 2 3

1 2 3

1

Hd :

1 2

2

1 2

1

1 2

2

1 2

1

Hb :

1 2

1 2 3 4

He :

Figure 3.11: HcMSCs as graphs

Proof Inclusions follow directly from the definitions. Moreover, strictness is

witnessed by the HcMSCs from Example 3.5.5, which are assigned in Figure 3.12

to a class they belong to so that there is no equivalent counterpart in a lower

class, respectively. �

While we first proposed HcMSCs as the most general case of our specification lan-

guage, HMSCs were actually the starting point of everything [MR97]. The study

of compositionality was then initiated in [GMP01] by Gunter et al. The notion of

global cooperation was independently introduced by Morin in [Mor02] and Gen-

est et al. in [GMSZ02], who also proposed the notion of local cooperation and

showed that any local-choice HMSC is implementable without deadlocks. Since

3.6. Regular MSC Languages 55

HcMSC (He)

↑

gc-HcMSC (Ha, Hb)

↑

safe-gc-HcMSC (Hc)

↑

left-closed-gc-HcMSC (Hd)

↑

gc-HMSC

Figure 3.12: The hierarchy of HcMSCs

then, several extensions have been considered to facilitate and enrich specifica-

tion of communicating systems. For instance, [LMM02] introduces a formalism

that allows for generating processes during system execution, while we assume

the number of processes to be fixed. In [MKT03] and [BM04], netcharts are

proposed and studied, which combine HMSCs with Petri nets to generate an ex-

ecutable behavior. Moreover, live sequence charts allow to distinguish between

mandatory and provisional system behavior, which is reflected in universal and

existential charts, respectively [DH01]. Another important area, which, however,

is not considered in this thesis, is verification of specifications against formalisms

such as temporal logics [MR00, BL01, MR04, GMMP04], monadic second-order

logics [Mad01, MM01, LMM02], and template MSCs [MPS98, GMMP04].

3.6 Regular MSC Languages

There have been several proposals for the right notion of regularity for MSC

languages. In their seminal work [HMKT00b, HMK+05], Henriksen et al. con-

sider an MSC language to be regular if its set of linearizations forms a regular

word language. For example, the MSC language {G}∗ (where G is taken from

Figure 3.9 on page 52, which allows to concatenate G arbitrarily often, is not

bounded and hence cannot be regular. It induces the set of MSCs that send

arbitrarily many messages from process 1 to process 2. The set of corresponding

linearizations gives rise to a set of words that, in particular, show the same num-

ber of send and receive events. This language is not recognizable in the free word

monoid, as, intuitively, we would need an unbounded counter for the number of

messages not being received. In contrast, the language {G · H}∗ is regular, as

its word language can be easily realized by a finite automaton. In simple words,

56 Chapter 3. Message Sequence Charts

regularity aims at finiteness of the underlying global system, which incorporates

the state of a communication channel.

Definition 3.6.1 (Regular MSC Language [HMKT00b])

A set L ⊆
�����

is called a regular MSC language (over P) if Lin(L) is a regular

word language over Act , i.e., Lin(L) ∈ REC � (Act).

The class of regular MSC languages is denoted by R ��� � .

Lemma 3.6.2 ([HMKT00b]) Any regular MSC language is ∀-bounded.

As mentioned above, {G}∗ with G again taken from Figure 3.9 is not regular.

However, it is ∃1-bounded and there is a simple gc-HMSC defining this language.

Moreover, as we will see in the next section, there is a simple finite message-

passing automaton accepting {G}∗. Thus, we are looking for another, extended

notion of regularity. So let us in the next section examine monadic second-order

logics whose formulas are interpreted over MSCs.

3.7 (E)MSO-definable MSC Languages

Recall that an MSC is modeled as a graph, which corresponds to the view taken

in [Mad01] and also adopted by [LL95, BAL97] where (the graph of) an MSC

is called a message flow graph. However, while most theorems (among them

Theorem 5.2.6) hold independently of the modeling, the way to define an MSC

immediately affects the syntax and expressivity of (fragments of) the correspond-

ing monadic second-order logic. As
�����

(P) ⊆
���

(Act , Pc), the monadic second-

order formulas that can be applied to MSCs, are those from MSO(Act , Pc). Recall

that the corresponding atomic entities are

λ(x) = σ (for σ ∈ Act) x Cp y (for p ∈ P) x Cc y x ∈ X x = y

(where x, y ∈ Var and X ∈ VAR). The definition of their semantics arises from

the general case of graphs.

The formula P (x) = p will serve as a shorthand for
∨

σ∈Actp
λ(x) = σ.

Example 3.7.1 Let L be the set of MSCs whose linearizations are of the form

(1!2)n(1!3)(3?1)(3!2)(2?3)(2?1)n, n ∈ IN. Recall that L ∈ gc-HcMSC and that

an example MSC from L is provided by Ma from Figure 3.10 on page 52. In fact,

L is MSO ��� � -definable. Let ϕ be the conjunction of the formulas ϕ1, ϕ2, and ϕ3,

3.8. Product MSC Languages 57

which describe the behavior of processes 1, 2, and 3, respectively, and are given

as follows:

ϕ1 = ∃x(λ(x) = 1!3

∧ ∀y(P (y) = 1 ∧ y <1 x→ λ(y) = 1!2)

∧ ∀y(P (y) = 1 ∧ x ≤1 y → y = x))

ϕ2 = ∃x(λ(x) = 2?3

∧ ∀y(P (y) = 2 ∧ x <2 y → λ(y) = 2?1)

∧ ∀y(P (y) = 2 ∧ y ≤2 x → y = x))

ϕ3 = ∃x(λ(x) = 3?1

∧ ∀y(y ≤3 x→ y = x))

It holds L � ��� (ϕ) = L. Moreover, ϕ can be equivalently written as both an

EMSO-formula and, even more obviously, an FO[≤]-formula. Note that, as L is

a set of total orders that gives rise to a non-regular word language over Act , L is

not MSO(Act ,−) � (Act)-definable, when formulas are interpreted over (arbitrary)

words. However, as we interpret ϕ over MSCs, only those words have to be

considered that are linearizations of MSCs. Accordingly, ϕ rather defines total

orders generated by the rational expression (1!2)∗(1!3)(3?1)(3!2)(2?3)(2?1)∗ while

restricting to MSCs only rules out graphs that are not valid MSCs.

Recall that the class of MSO ��� � -definable MSC languages is denoted by MSO ��� �

and the one of EMSO ��� � -definable MSC languages by EMSO ��� � .

3.8 Product MSC Languages

Languages defined by finite transition systems working in parallel are known

as product languages and were initially studied by Thiagarajan in [Thi95] in

the domain of Mazurkiewicz traces where distributed components communicate

executing actions simultaneously rather than sending messages (cf. Section 2.4).

Taking up the idea of product behavior, [AEY00] considers MSC languages that

are closed under inference, which can be described by the setting depicted in

Figure 3.9 on page 52. Attempting to realize the MSC language {G, I}, one might

argue that the behavior of G · I is a feasible one, too. As processes 1 and 2 do

not get in touch with processes 3 and 4, it is not clear to a single process whether

to realize the behavior of G or that of I so that, finally, G · I might be inferred

from {G, I}. We call a set of MSCs that is closed under such an inference a weak

product MSC language. Note that, in [AEY00], no finiteness condition was studied

58 Chapter 3. Message Sequence Charts

so that, in principle, it is possible to realize {Gn2
| n ∈ IN≥1}. Summarizing, we

may say that product behavior respects independence.

Let us be more precise and, given L ⊆
�����

and M ∈
�����

, write L `P M if the

following holds:

∀p ∈ P : ∃M ′ ∈ L : M ′ �p = M �p

Definition 3.8.1 ((Weak) Product MSC Language, cf. [AEY00])

A set L ⊆
�����

is called a weak product MSC language (over P) if, for any

M ∈
�����

, L `P M implies M ∈ L. The finite union of weak product MSC

languages is called a product MSC language (over P).

Adopting the notation we introduced for traces, we denote by P0��� � the class of

weak product MSC languages and by P � ��� the class of product MSC languages.

In other words, an MSC language L is a weak product MSC language if every MSC

that agrees on each process line with some MSC from L is contained in L, too.

Getting back to Figure 3.9, G · I agrees with G on the first two process lines and

with I on the remaining two. Thus, G · I belongs to any weak product language

containing both G and I. As global knowledge of an underlying system, one

often allows several global initial or final states. This is the reason for considering

finite unions of weak product languages. For example, {G, I} is a product MSC

language, while {G · I}∗ is not. Let us again bring together the concepts of

product behavior and regularity.

Definition 3.8.2 (Regular Product MSC Language)

We call R ��� � ∩ P0��� � the class of weak regular product MSC languages (over P)

and denote it by RP0��� � . Moreover, an MSC language L is said to be a regular

product MSC language (over P), written L ∈ RP ��� � , if it is the finite union of

sets from RP0����� .

Let us now extend our study towards product languages in combination with

EMSO-definable languages. As the class of EMSO-definable languages will turn

out to capture exactly the class of languages implementable in terms of a finite

message-passing automaton, we rather concentrate on EMSO-definable languages

than on MSO-definable ones.

Definition 3.8.3 (EMSO-definable Product MSC Language)

We call EMSO ��� � ∩ P0� ��� the class of weak EMSO-definable product MSC lan-

guages and denote it by EP0��� � . An MSC language L is called an EMSO-definable

product MSC language (L ∈ EP ��� �) if it is the finite union of sets from EP0��� � .

If it is clear from the context that we talk about MSCs, we omit the reference to
�����

, speak of, for example, MSO- and EMSO-definability, and simply write R,

P, and MSO.

3.8. Product MSC Languages 59

RP0

EP0

P0

RP

EP

P

R

EMSO

MSC

Figure 3.13: The hierarchy of product MSC languages

Theorem 3.8.4 The classes of languages proposed so far (apart from HcMSC,

which is reconsidered in Chapter 5 in more detail) draw the picture shown in

Figure 3.13. The hierarchy is strict.

Proof We will prove R ⊆ EMSO in Chapter 4. The other inclusions are

straightforward. It remains to show strictness and incomparability. Consider the

MSCs G and I from Figure 3.9 on page 52. For a (crossed) arrow from a class

of MSC languages C1 to a class C2 in Figure 3.14, the tabular aside specifies an

MSC language L with L ∈ C1 and L 6∈ C2. �

RP0

EP0

P0

RP

EP

P

R

EMSO

MSC

// 4

//1

3 \\

2 \\

1 {G, I}

2 {G}∗

3 L(fk) with k ≥ 2

(cf. Theorem 5.2.1)

4 L bN+1 with N̂ ≥ 1

(cf. Lemma 4.5.2)

Figure 3.14: Strictness and incomparability in the hierarchy

Chapter 4

Message-Passing Automata

In this chapter, we introduce and study message-passing automata (MPAs), a

model of computation rather than a specification language, which is close to a

real-life implementation of a communicating system.

4.1 Message-Passing Automata

MPAs can be considered to be the most common computation model for MSCs.

However, slightly different but related models have been investigated in [BZ83,

MKRS98], for example. An MPA is a collection of state machines that share one

global initial state and several global final states. The machines are connected

pairwise with a priori unbounded reliable FIFO buffers. The transitions of each

component are labeled with send or receive actions. Hereby, a send action p!q

puts a message at the end of the channel from p to q. A receive action can be

taken provided the requested message is found in the channel. To extend the

expressive power, MPAs can send certain synchronization messages. Let us be

more precise:

Definition 4.1.1 (Message-Passing Automaton)

A message-passing automaton (over P) is a structure A = ((Ap)p∈P ,D, sin , F)

such that

– D is a nonempty finite set of synchronization messages (or data),

– for each p ∈ P , Ap is a pair (Sp,∆p) where

• Sp is a nonempty set of (p-)local states and

• ∆p ⊆ Sp × Actp ×D × Sp is the set of (p-)local transitions,

62 Chapter 4. Message-Passing Automata

– sin ∈
∏

p∈P Sp is the global initial state, and

– F ⊆
∏

p∈P Sp is the finite set of global final states.

By SA, we denote the set
∏

p∈P Sp of global states of A. For s = (sp)p∈P ∈ SA,

s[p] will henceforth refer to sp.

An MPA A = ((Ap)p∈P ,D, sin , F), Ap = (Sp,∆p), is called

– an N-MPA, N ≥ 1, if |D| = N ,

– finite if, for each p ∈ P , Sp is finite,

– locally-accepting if, for any p ∈ P , there is a set Fp ⊆ Sp such that F =∏
p∈P Fp, and

– deterministic if, for any p ∈ P , ∆p satisfies the following conditions:

• If (s, p!q,m1, s1) ∈ ∆p and (s, p!q,m2, s2) ∈ ∆p, then m1 = m2 and

s1 = s2.

• If (s, p?q,m, s1) ∈ ∆p and (s, p?q,m, s2) ∈ ∆p, then s1 = s2.

The class of MPAs over P is denoted by MPA(P)1, the class of finite MPAs by

MPAf (P). However, as the underlying set of processes will be clear from the con-

text, we henceforth omit any reference to P and just write MPA and, respectively

MPAf . For a set C of MPAs, we denote by N -C, C`, and det-C the classes of N -,

locally-accepting, and deterministic MPAs A with A ∈ C, respectively. The intu-

ition behind local acceptance will be that recognition by the whole system defers

to acceptance by any single component. A locally-accepting finite 2-MPA with

set of synchronization messages {◦, •}, which is not deterministic, is illustrated

in Figure 4.1 on the next page. (Whenever we deal with local acceptance, we

might depict a local final state by a second circle.) Note that its MSC language

cannot be recognized by some MPA with only one synchronization message, even

if we allow infinite local state spaces. Nevertheless, it can be recognized by some

deterministic finite MPA. (To verify this is left to the reader as an exercise. Ba-

sically, the second component A2 has to be modified accordingly.) However, we

should first define the behavior of MPAs. In doing so, we adhere to the style

of [Kus03]. In particular, an automaton will run on MSCs rather than lineariza-

tions of MSCs, allowing for its distributed behavior. Let A = ((Ap)p∈P ,D, s
in , F),

Ap = (Sp,∆p), be an MPA and M = (E, {Cp}p∈P ,Cc, λ) ∈
�����

be an MSC. For

1Note that MPA(P) does not impose any restriction on the state space, which can therefore

produce non-recursive behavior.

4.1. Message-Passing Automata 63

1!2, ◦

2?1, •

1?2, ◦

2!1, ◦1!2, • 1?2, ◦

2?1, ◦ 2!1, ◦

A1: A2:

Figure 4.1: A message-passing automaton

a function r : E →
⋃

p∈P Sp, we define r− : E →
⋃

p∈P Sp to map an event e ∈ E

onto sin [P (e)] if e is minimal in (EP (e),≤P (e)) and, otherwise, onto r(e′) where

e′ ∈ EP (e) is the unique event with e′ CP (e) e. A run of A on M is a pair (r,m)

of mappings r : E →
⋃

p∈P Sp with r(e) ∈ SP (e) for each e ∈ E and m : Cc → D

such that, for any e, e′ ∈ E, e Cc e
′ implies

– (r−(e), λ(e), m((e, e′)), r(e)) ∈ ∆P (e) and

– (r−(e′), λ(e′), m((e, e′)), r(e′)) ∈ ∆P (e′).

For p ∈ P , let fp denote sin [p] if Ep is empty. Otherwise, let fp denote the p-

local state r(last(M � p)). We call (r,m) accepting if (fp)p∈P ∈ F . By L(A) :=

{M ∈
�����

| there is an accepting run of A on M}, let us denote the language

of A. Moreover, we may canonically define 1 ��� � to be a member of L(A) if

(and only if) sin ∈ F . Given a class C of MPAs, we furthermore set L(C) to be

{L ⊆
�����

| there is A ∈ C such that L = L(A)}, which is the class of languages

of C. Moreover, we consider L(MPAf) to be some kind of standard class, which

is identified by MPA := L(MPAf). We also say that the languages from MPA

are the implementable ones. This nomenclature is arbitrary and rather geared

to the literature, where the term realizability usually refers to locally-accepting

1-MPAs.

Note that, for any deterministic finite MPA A = ((Ap)p∈P ,D, s
in , F), Ap =

(Sp,∆p), and any MSC M , there is at most one run of A on M . However, A

can be extended towards a deterministic finite MPA A′ = ((A′
p)p∈P ,D′, s′0, F

′),

A′
p = (S ′

p,∆
′
p), such that L(A′) = L(A) and, for any MSC M , there is exactly

one run of A′ on M . To this aim, we extend the set of synchronization messages

D by a message fail , i.e., D′ = D] {fail} and, for each p ∈ P , enrich Sp by a

sink state sink p, i.e., S ′
p = Sp] {sinkp}. For any p ∈ P , ∆′

p already contains all

the transitions from ∆p. Moreover, transitions are added to ∆′
p according to the

following procedure: for any s ∈ Sp and q ∈ P \ {p},

64 Chapter 4. Message-Passing Automata

– if there is no m ∈ D and s′ ∈ Sp such that (s, p!q,m, s′) ∈ ∆p, add a

transition (s, p!q, fail , sink p) and

– add a transition (sinkp, p!q, fail , sinkp).

For any s ∈ Sp, q ∈ P \ {p}, and m ∈ D,

– if there is no s′ ∈ Sp such that (s, p?q,m, s′) ∈ ∆p, add a transition

(s, p?q,m, sinkp),

– add a transition (s, p?q, fail , sink p), and

– add a transition (sinkp, p?q,m
′, sinkp) for any m′ ∈ D′.

Finally, sin and F are adopted from A, i.e., s′0 = sin and F ′ = F . In other words,

local states from Sp that lack an outgoing send transition labeled p!q for some

q, are enabled to send at least a message fail to q, though this is doomed to

failure. Moreover, a missing receipt of a message m is made possible, even if it

ends in a state sinkp, which does not contribute to an accepting run either. Thus,

the above transformation does not affect the recognized language but enables the

resulting automaton to execute a run on any given MSC. Those automata will

be used to show in Chapter 5 that deterministic finite MPAs are strictly weaker

than their nondeterministic counterpart.

Consider two variants of MPAs. The first allows for accepting extended MSCs, say

from
����� Q for some alphabet Q. Accordingly, for p ∈ P , the p-local transition

relation of an MPA is henceforth a subset of Sp × (Act p ×Q)×D×Sp. However,

the type of an action (σ, q) still depends only on σ so that, in particular, a run

may allow communicating events to have different additional labelings. Such

an automaton will be used in Chapter 5 to characterize the language of some

EMSO(Act , Pc)-formula ϕ(Y1, . . . , Yn), which, as mentioned in Chapter 2, defines

a subset of
����� {0,1}n

. A second variant of MPAs allows to specify different

starting points of a run instead of one single global initial state. So let an extended

MPA be an MPA A = ((Ap)p∈P ,D, Sin, F) where, though, Sin ⊆
∏

p∈P Sp is a

nonempty finite set of global initial states. An (accepting) run of A and the

language of A are defined analogously to the MPA case: an (accepting) run

of A is an (accepting, respectively) run of one of the MPAs ((Ap)p∈P ,D, s0, F)

with s0 ∈ Sin . As it will turn out, several global initial states do not extend

expressiveness.

In [HMKT00b, Mor02, Gen04], a run of an MPA is defined on linearizations of

MSCs rather than on MSCs, which reflects an operational behavior at the expense

that several execution sequences might stand for one and the same run. Usually,

4.1. Message-Passing Automata 65

such a view relies on the global transition relation of A, which, in turn, defers

to the notion of a configuration. Let us be more precise and consider an MPA

A = ((Ap)p∈P ,D, s
in , F), Ap = (Sp,∆p). The set of configurations of A, denoted

by ConfA, is the cartesian product SA × CA where CA := {χ | χ : Ch → D∗} is

the set of possible channel contents of A. Now, the global transition relation of

A, =⇒A ⊆ ConfA × Act ×D × ConfA, is defined as follows:

– ((s, χ), p!q,m, (s′, χ′)) ∈ =⇒A if

• (s[p], p!q,m, s′[p]) ∈ ∆p,

• χ′ = χ[(p, q)/m · χ((p, q))] (i.e., χ′ maps (p, q) to m · χ((p, q)) and,

otherwise, coincides with χ), and

• for all r ∈ P \ {p}, s[r] = s′[r].

– ((s, χ), p?q,m, (s′, χ′)) ∈ =⇒A if there is a word w ∈ D∗ such that

• (s[p], p?q,m, s′[p]) ∈ ∆p,

• χ((q, p)) = w ·m,

• χ′ = χ[(q, p)/w], and

• for all r ∈ P \ {p}, s[r] = s′[r].

Let χε : Ch → D∗ map each channel onto the empty word. When we set (sin , χε)

to be the initial configuration and F × {χε} to be the set of final configurations,

A defines in the canonical way a word language Lw(A) ⊆
�

(Act). As one can

verify, it holds Lw(A) = Lin(L(A)). In particular, Lw(A) uniquely determines

an MSC language. For (s, χ), (s′, χ′) ∈ ConfA, we write (s, χ) =⇒A (s′, χ′) if

((s, χ), σ,m, (s′, χ′)) ∈ =⇒A for some σ ∈ Act and m ∈ D. We call a configuration

(s, χ) ∈ ConfA reachable in A if (sin , χε) =⇒∗
A (s, χ).

For B ≥ 1, an MPA A is called universally-B-bounded (∀B-bounded) if L(A) is

∀B-bounded.2 Furthermore, A is called universally-bounded (∀-bounded) if it is

∀B-bounded for some B ≥ 1. Note that A is ∀-bounded if only a finite number

of configurations is reachable in A. Given a class C of MPAs, let ∀C denote

the set of ∀-bounded MPAs A with A ∈ C. The same principle as for universal

boundedness applies to the existential one. In this sense, let ∃MPAf denote the

class of ∃-bounded finite MPAs. For example, the MPA from Figure 4.1 on page 63

is neither ∀-bounded nor ∃-bounded. Note that our definition of boundedness for

MPAs coincides with the one used in [Kus03]. According to Henriksen et al., who

2Note that this is a semantic characterization, as it depends on the language of A.

66 Chapter 4. Message-Passing Automata

use a slightly different notion of bounded MPAs, we call an MPA A strongly-∀B-

bounded for some B ≥ 1 if, for any (p, q) ∈ Ch and any configuration (s, χ) that

is reachable in A, |χ((p, q))| ≤ B. An MPA A is called strongly-∀-bounded if it is

strongly-∀B-bounded for some B ≥ 1. Given a class C of MPAs, let ∀!C denote

the set of strongly-∀-bounded MPAs A with A ∈ C.

Lemma 4.1.2 Let N ≥ 1 and L be an MSC language. Then, L is the language

of a (∀-bounded/finite/∀-bounded and finite) N -MPA iff it is the language of an

extended locally-accepting (∀-bounded/finite/∀-bounded and finite, respectively)

N -MPA.

Proof “only if”: Let A = ((Ap)p∈P ,D, sin , F), Ap = (Sp,∆p), be an MPA.

For each state s ∈ F , introduce a global initial state running a distinct copy

A(s) of A with local state spaces Ss
p (in the following, a copy of a local state

s ∈ Sp in A(s) is denoted by ss). The set of global final states is henceforth

the cartesian product
∏

p∈P

⋃
s∈F{s[p]

s}. The resulting MPA is locally-accepting

and, obviously, recognizes the same language as A without having affected the

number of messages, boundedness, or finiteness properties.

“if”: Let A = ((Ap)p∈P ,D, Sin, F), Ap = (Sp,∆p), be an extended MPA where F

is the cartesian product
∏

p∈P Fp of sets Fp ⊆ Sp. Similarly to the “only if”-case,

the basic idea is to create a copy Ss0
p = Sp ×{s0} of Sp for any global initial state

s0 ∈ Sin . Starting in some new global initial state sin and switching to some state

(s, s0) now settles for simulating a run of A from s0 by henceforth allowing to

enter no other copy than Ss0
p . In a global final state, it is then checked whether

the other processes agree in their choice of s0. More formally, we may have local

transitions of the form ((s, s0), σ,m, (s
′, s0)) with s0 ∈ Sin if (s, σ,m, s′) is a local

transition of A. Moreover, we add kind of initial transitions (sin [p], σ,m, (s, s0))

if (s0[p], σ,m, s) is some p-local transition of A with s0 ∈ Sin . It remains to

reformulate the acceptance condition. Henceforth, a state s is a global final state

if there is s0 ∈ Sin such that, for any p ∈ P , either s[p] = sin [p] and s0[p] ∈ Fp or

s[p] ∈ Fp × {s0}. Again, neither the number of messages used nor boundedness

or finiteness properties have changed. Note that, as F is already finite, we also

create a finite number of global final states only. �

Besides determinism, the absence of deadlocks is a crucial aim when designing a

distributed protocol. The study of realizability without deadlocks was conceived

in [AEY00] and then continued in [Loh03]. While, to some extent, finite au-

tomata over words and asynchronous automata over traces can be assumed to be

free from deadlock states, which cannot contribute to an accepting run anymore,

finite MPAs are more complicated in this regard: in general, deadlocks cannot be

avoided. Even simple finite MSC languages are inherently non-safe. Moreover, it

4.1. Message-Passing Automata 67

s0

s1 s2

t0

t1 t2

1!2 1?2 2!1 2?1

A1 : A2 :

Figure 4.2: A non-safe MPA

is undecidable if an MPA has a deadlock at all. Let us be more precise and con-

sider an MPA A = ((Ap)p∈P ,D, sin , F). We say that (s, χ) ∈ ConfA is a deadlock

configuration of A if there is no (s′, χ′) ∈ F × {χε} such that (s, χ) =⇒∗
A (s′, χ′).

We call A safe if there is no deadlock configuration reachable in A. For a set C

of MPAs, we denote by safe-C the class of safe MPAs A with A ∈ C. Consider

the non-safe finite MPA A ∈ 1-∀MPAf
` from Figure 4.2 (say with extra message

◦). It is non-safe, as the deadlock configuration ((s1, t1), ((1, 2) 7→ ◦, (2, 1) 7→ ◦))

is reachable in A. It even holds L(A) 6∈ L(safe-MPA), i.e., the language of A

cannot be recognized by some safe MPA. The structural problem is that, in any

implementation of L(A) (provided there is only one global initial state), both pro-

cesses 1 and 2 can independently decide to send a message, which inevitably leads

into a deadlock configuration. Those phenomena are known as non-local choice,

whose detection is studied in [BAL97] for high-level MSCs. In fact, it was shown

in [GMSZ02] that any local-choice HMSC, which avoids non-local choice, can be

implemented by some safe finite MPA. The example shows that L(1-∀MPAf
`) and

L(safe-MPA) are incomparable wrt. inclusion. In particular, the weakest model

of an MPA is able to produce inherently non-safe MSC languages.

Remark 4.1.3 The following problems are undecidable:

(a) Input: A ∈ MPAf . Question: L(A) = ∅?

(b) Input: A ∈ MPAf . Question: Is A safe?

(c) Input: A ∈ MPAf . Question: A ∈ ∀MPAf?

Proof Several decidability questions were studied for communicating finite-state

machines, a slightly different variant of MPAs. Among them, (a problem related

to) the emptiness and safety problem for communicating finite-state machines

turned out to be undecidable [BZ83]. The proof can be easily adapted towards

MPAs. The remaining problem is then reduced to the emptiness problem (see

[Gen04] for details). �

68 Chapter 4. Message-Passing Automata

4.2 MPAs vs. Product MSC Languages

Let us identify the automata model that corresponds precisely to the class of

(weak) product MSC languages. It will provide the basis for further expressiveness

results in the scope of product MSC languages.

Lemma 4.2.1 ([AEY00])

P0 = L(1-MPA`)

Corollary 4.2.2

P = L(1-MPA)

Proof “⊇”: According to Lemma 4.1.2, a 1-MPA can be transformed into

an equivalent extended locally-accepting 1-MPA ((Ap)p∈P ,D, Sin, F), which then

recognizes
⋃

s∈Sin L(((Ap)p∈P ,D, s, F)), thus, the finite union of languages that

are each accepted by some locally-accepting 1-MPA. The assertion follows from

Lemma 4.2.1 and Definition 3.8.1.

“⊆”: Similarly, any MSC language L ∈ P is the union of finitely many languages

L1, . . . , Lk ∈ P0, which, according to Lemma 4.2.1 are recognized by locally-

accepting 1-MPAs A1, . . . ,Ak (each employing, say, ◦ as synchronization mes-

sage) with global initial states s1, . . . , sk and sets of global final states F 1, . . . , F k,

respectively, where, for each i ∈ {1, . . . , k}, F i =
∏

p∈P F
i
p for some F i

p ⊆ Si
p (let

hereby Si
p be the set of p-local states of Ai). Without loss of generality, A1, . . . ,Ak

have mutually distinct local state spaces. The extended locally-accepting 1-MPA

recognizing L processwise merges the state spaces and transitions of A1, . . . ,Ak,

employs {s1, . . . , sk} being the set of global initial states, and, similarly to the

proof of Lemma 4.1.2, sets the set of global final states to be
∏

p∈P

⋃
i∈{1,...,k} F

i
p.

The assertion then follows from Lemma 4.1.2. �

4.3 MPAs vs. Regular MSC Languages

Henriksen et al. provide an automata-theoretic characterization of the class of

regular MSC languages in terms of (strongly-)∀-bounded finite MPAs.

Theorem 4.3.1 ([HMKT00b])

R = L(∀MPAf) = L(∀!MPAf)

In the framework of regular MSC languages, restricting to one synchronization

message (and a local acceptance condition) on the automata side then means to

restrict to (weak, respectively) product languages:

4.3. MPAs vs. Regular MSC Languages 69

1 2 3

M1:
1 2 3

M2:

Figure 4.3: Universal boundedness vs. strong boundedness

Lemma 4.3.2

RP0 = L(1-∀MPAf
`)

Proof “⊇”: According to Lemma 4.2.1, the language of an MPA A ∈ 1-∀MPAf
` is

a weak product language, and, according to Theorem 4.3.1, Lw(A) = Lin(L(A))

constitutes a regular word language over Act .

“⊆”: Let L ∈ RP0 and, for p ∈ P , Ap = (Sp,∆p, s
in
p , Fp) be a finite automaton

over Actp satisfying L(Ap) = L � p := {M � p | M ∈ L}. Consider the MPA

A = ((A′
p)p∈P ,D, s

in , F) with D = {◦}, sin = (sinp)p∈P , F =
∏

p∈P Fp, and A′
p =

(Sp,∆
′
p) where, for any s, s′ ∈ Sp and σ ∈ Actp, (s, σ, ◦, s′) ∈ ∆′

p if (s, σ, s′) ∈ ∆p.

We claim that both A ∈ 1-∀MPAf
` and L(A) = L. First, it is easy to see that

L ⊆ L(A). Now assume an MSC M to be contained in L(A). For each p ∈ P ,

M �p ∈ L(Ap) = L�p so that there is an MSC M ′ ∈ L with M ′ �p = M �p. From

the definition of P0, it then immediately follows that M is contained in L, too.

Clearly, A is finite, locally-accepting, and ∀-bounded. �

Note that Lemma 4.3.2 does not hold if we adopt the definition of strong universal

boundedness proposed by Henriksen et al. (while Theorem 4.3.1 still holds).

Lemma 4.3.3

RP0 % L(1-∀!MPAf
`)

Proof It remains to show strictness. Let L = {M1}∗ ∪ {M2}∗ with M1 and M2

given by Figure 4.3, and suppose there is an MPA A ∈ 1-MPAf
` with L(A) = L.

Then, for each natural n ≥ 1, the word

(1!2)2
(
(3!1)(1?3)(1!2)2(2?1)(2!3)(3?2)

)n
∈

�
(Act)

leads from the initial configuration of A via =⇒A to some configuration (s, χ)

with χ((1, 2)) = n + 3. Thus, A cannot be strongly-∀-bounded. Nevertheless, L

is contained in RP0 and ∀2-bounded. �

However, if we restrict to safely realizable MSC languages, Lemma 4.3.2 holds

for both definitions of universal boundedness, as safely realizable languages can

70 Chapter 4. Message-Passing Automata

be realized by MPAs in which no deadlock configuration is reachable, i.e., we

need not pay attention to configurations that do not contribute to the recognized

language anyway.

Corollary 4.3.4 RP = L(1-∀MPAf)

The proof of Corollary 4.3.4 is analogous to the one of Corollary 4.2.2.

Let us in the following compare traces and MSCs in the scope of regular MSC lan-

guages and justify that, in this regard, we have chosen the same terminology for

traces and MSCs. In particular, we raise the hope that results and logics regard-

ing product trace languages are amenable to MSCs, such as the local temporal

logic PTL, which is tailored to systems that support product behavior [Thi95].

Though the following investigation is rather independent of MPAs, it allows to

immediately derive corresponding expressiveness results for automata.

Proposition 4.3.5 ([Kus02, HMKT99]) For any B ≥ 1 and any L ⊆
�����

∀B,

L ∈ R ����� iff TrB(L) ∈ R ��� (Σ̃B).

Proof “only if”: Let B ≥ 1 and let L ⊆
�����

∀B be a B-bounded regular MSC

language, i.e., Lin(L) is recognized by some minimal finite automaton A over

Act (which means that, in particular, from each state of A, some final state is

reachable). As each state of A can be associated with a fixed channel contents, it

is easy to provide the transitions of A with additional labelings from {1, . . . , B},

which leads to a finite automaton over Act×{1, . . . , B} recognizing Lin(TrB(L)).

“if”: As shown in [HMKT99], any asynchronous automaton over Σ̃B has an

equivalent counterpart in form of a (strongly-)bounded finite MPA. Together

with Theorems 2.4.10 and 4.3.1, this proves the lemma. �

Proposition 4.3.6 For any B ≥ 1 and any L ⊆
�����

∀B,

L ∈ RP0��� � iff TrB(L) ∈ RP0
��� (Σ̃B)

.

Proof According to Proposition 4.3.5, the operator TrB and its converse both

preserve regularity.

“only if”: Suppose L ⊆
�����

∀B to be a weak regular product MSC language. Re-

call that TrB(L) is a regular trace language over Σ̃B = (Actγ)γ∈P∪Co . Moreover,

let T ∈
���

(Σ̃B) such that, for any γ ∈ P ∪ Co, there is a trace Tγ ∈ TrB(L)

satisfying Tγ � γ = T � γ. Then, T ∈ TrB(
�����

∀B) and, in particular, we have

Tp � p = T � p and, thus, Tr−1
B (Tp) � p = Tr−1

B (T) � p for any p ∈ P , which implies

Tr−1
B (T) ∈ L and T ∈ TrB(L).

4.4. MPAs vs. EMSO-definable MSC Languages 71

“if”: Suppose L ⊆
�����

∀B to generate a weak regular trace language over Σ̃B,

i.e., TrB(L) ∈ RP0
��� (Σ̃B)

, and let M ∈
�����

∀B such that, for any p ∈ P , there is

Mp ∈ L with Mp �p = M �p. Trivially, we have that, for any p ∈ P , TrB(Mp)�p =

TrB(M)�p. Moreover, for any γ = (p!q, q?p, n) ∈ Co, TrB(Mp)�γ = TrB(M)�γ

(note that also TrB(Mq) � γ = TrB(M) � γ). This is because, in the trace of a

∀B-bounded MSC, the n-th receipt of a message through (p, q) is ordered before

sending a message from p to q for the (n + B)-th time. Altogether, we have

TrB(M) ∈ TrB(L) and, consequently, M ∈ L. �

The following extension towards finite unions of weak regular product languages

is obvious.

Corollary 4.3.7 For any B ≥ 1 and any L ⊆
�����

∀B,

L ∈ RP ��� � iff TrB(L) ∈ RP ��� (Σ̃B).

4.4 MPAs vs. EMSO-definable MSC Languages

We now turn towards one of our main results, which establishes the relationship

between finite MPAs and EMSO logic over MSCs.

4.4.1 MPA = EMSO �����

In fact, any EMSO-definable MSC language is implementable as a finite MPA and,

vice versa, any MSC language recognized by some finite MPA has an appropriate

EMSO counterpart.

Theorem 4.4.1

MPA = EMSO �����

The theorem follows directly from Lemma 4.4.3 and Lemma 4.4.4, which will be

shown in the following sections. From Lemma 4.4.3, we can furthermore deduce

the following:

Theorem 4.4.2 The following two problems are undecidable:

(a) Satisfiability for EMSO sentences over
�����

(b) Universality for Σ2-sentences over
�����

Proof Using Remark 4.1.3 and Lemma 4.4.3, we get Corollary 4.4.2 (a). Corol-

lary 4.4.2 (b) follows from an easy reduction from the satisfiability problem: there

is an MSC satisfying a given EMSO sentence ϕ iff not any MSC satisfies the dual

of ϕ, which can be written as a Σ2-sentence. �

72 Chapter 4. Message-Passing Automata

4.4.2 From MPAf to EMSO

The easier part is to provide an EMSO formula for a given finite MPA. We

hereby mainly follow similar constructions applied, for example, to finite and

asynchronous automata (cf. Theorem 2.3.3 and [DGK00] for examples).

Lemma 4.4.3 MPA ⊆ EMSO �����

Proof Let N ≥ 1 and let A = ((Ap)p∈P , {1, . . . , N}, sin , F), Ap = (Sp,∆p), be

a finite MPA. We assume F 6= ∅. Note that Ap, once equipped with an initial

state s ∈ Sp and a set of final states Fp ⊆ Sp, can be considered as a finite word

automaton generating a regular word language over Act p × {1, . . . , N}. In case

that N = 1, we can even understand Ap to recognize a word language over Act p

ignoring the respective message component in the transition relation ∆p.

Our aim is to exhibit an EMSO(Act , Pc)-sentence Ψ such that L(Ψ) = L(A).

Recall that the class of word languages that are EMSO � -definable coincides

with the class of regular word languages. Clearly, the language of A equals⋃
s∈F L(((Ap)p∈P , {1, . . . , N}, sin , {s})). So let, for each global final state s ∈ F

and each process p ∈ P ,

ϕs,p = ∃Xs,p
1 . . . ∃Xs,p

ns,p
ψs,p(Xs,p

1 , . . . , Xs,p
ns,p

)

be an EMSO(Actp,−)-sentence with first-order kernel ψs,p such that L � (Actp)(ϕ
s,p)

is the language of the finite automaton Ap with initial state sin [p] and set of

final states {s[p]}. The formula Ψ now requires the existence of an assignment

of synchronization messages to the events that, on the one hand, respects that

communicating events have to be equally labeled and, on the other hand, meets

the restrictions imposed by the formulas ϕs,p for at least one final state s ∈ F . It

is given by

Ψ = ∃X1 . . .∃XN ∃X
(

partition(X1, . . . , XN)

∧ consistent(X1, . . . , XN)

∧
∨

s∈F

∧
p∈P processs,p(X1, . . . , XN , X

s,p
1 , . . . , Xs,p

ns,p
)
)

where X is the block of all the second-order variables Xs,p
i .

The formula partition(X1, . . . , XN) ensures that the variables X1, . . . , XN define

a mapping from the set of events of an MSC to the set of synchronization mes-

sages {1, . . . , N}. Then, consistent(X1, . . . , XN) guarantees that the mapping

4.4. MPAs vs. EMSO-definable MSC Languages 73

is consistent, i.e., a send event and its corresponding receive event are equally

labeled wrt. the alphabet of synchronization messages:

consistent(X1, . . . , XN) = ∀x∀y


x Cc y →

∨

i∈{1,...,N}

(x ∈ Xi ∧ y ∈ Xi)




For s ∈ F and p ∈ P , the formula processs,p(X1, . . . , XN , X
s,p
1 , . . . , Xs,p

ns,p
) en-

sures that the total order that process p induces wrt. an MSC corresponds to

what the word automaton Ap with initial state sin [p] and set of final states

{s[p]} recognizes. It is the projection ||ψs,p||p of the formula ψs,p on p, which

is inductively derived. In particular (recall that ψs,p is the first-order kernel

of a formula interpreted over words (E,C, λ) ∈
�

(Act p × {1, . . . , N}) with

λ : E → Actp × {1, . . . , N}),

– ||λ(x) = (σ, n)||p = (λ(x) = σ) ∧ x ∈ Xn,

– ||x ∈ X||p = x ∈ X,

– ||x C y||p = x Cp y,

– ||∃xϕ||p = ∃x(P (x) = p ∧ ||ϕ||p), and

– ||∀xϕ||p = ∀x(P (x) = p→ ||ϕ||p),

while the remaining derivations are defined canonically. Note that, though Ψ

allows the set variables Xs,p
i to range over arbitrary subsets of events, in ||ψs,p||p,

their interpretation is restricted to elements of process p. �

4.4.3 From EMSO to MPAf

We now show that an EMSO(Act , Pc)-sentence that is interpreted over MSCs can

be transformed into an equivalent finite MPA.

Lemma 4.4.4

MPA ⊇ EMSO �����

Proof Suppose ϕ to be an EMSO(Act , Pc)-sentence. As
�����

is a set of bounded

degree, we can, according to Theorem 2.2.13, assume the existence of a graph ac-

ceptor B over (Act , Pc) that, running on MSCs, recognizes the MSC language

defined by ϕ. In turn, B will be translated into a finite MPA A that captures the

application of B to MSCs, i.e., L(A) = L ��� � (B). So let B = (Q,R,S,Occ) be

74 Chapter 4. Message-Passing Automata

a graph acceptor over (Act , Pc). (A simple graph acceptor tailored to MSCs—

without occurrence constraints and a singleton as set of states—and a corre-

sponding run are depicted in Figure 4.5 on the facing page and Figure 4.6 on

page 76, respectively. The recognized MSC language is {G}∗ where G is taken

from Figure 3.9 on page 52. However, there is an equivalent graph acceptor even

with radius 0. To verify this is left as an exercise to the reader.)

For our purpose, it suffices to consider only those R-spheres H ∈ S for which there

is an extended MSC M = (E, {Cp}p∈P ,Cc, λ) ∈
����� Q, which has an extended

labeling function λ : E → Act × Q, and an event e ∈ E such that H is the R-

sphere of M around e. Other spheres cannot contribute to an MSC. Because, to

become part of a run on some MSC M , an R-sphere has to admit an embedding

into M . Accordingly, the 2-sphere illustrated in part (a) of Figure 4.4 on the

next page may contribute to a run on an MSC (it can be complemented by a

1!3-labeled event arranged in order between the two other events of process 1),

while the 2-sphere illustrated aside is irrelevant for accepting MSCs and will be

ignored in the following. This assumption is essential, as it ensures that, for each

H = (E, {Cp}p∈P ,Cc, λ, γ) ∈ S and e ∈ E, dH(e, γ) < R implies that E also

contains a communication partner of e wrt. Cc.

In the following, we use notions that we have introduced for MSCs also for spheres

(E, {Cp}p∈P ,Cc, λ, γ) over (Act × Q,Pc), such as P (e) and Ep (to indicate the

process of e ∈ E and as abbreviation for λ−1(Act p ×Q), respectively). Note also

that, wrt. spheres, ≤p is not necessarily a total order. For example, considering

the 2-sphere from Figure 4.4 (a), P (a) = 1, E1 = {a, e}, and b ≤2 d, but not

a ≤1 e. Let maxE := max{|E| | (E, {Cp}p∈P ,Cc, λ, γ) ∈ S} and let S+ be the set

of extended R-spheres, i.e., the set of structures ((E, {Cp}p∈P ,Cc, λ, γ, e), i) where

(E, {Cp}p∈P ,Cc, λ, γ) ∈ S, e ∈ E is the active node, and i ∈ {1, . . . , 4·maxE 2+1}

is the current instance. For p ∈ P , we define Sp := {(E, {Cp}p∈P ,Cc, λ, γ) ∈

S | P (γ) = p} and, furthermore, S+
p := {((E, {Cp}p∈P ,Cc, λ, γ, e), i) ∈ S+ |

P (e) = p}. Finally, let max(Occ) denote the least threshold n such that Occ

does not distinguish occurrence numbers ≥ n. For readability, we let in the

following C denote the collection ({Cp}p∈P ,Cc) and just write (E,C, λ, γ) instead

of (E, {Cp}p∈P ,Cc, λ, γ).

The idea of the transformation is that, roughly speaking, A guesses a tiling of

the MSC to be read and then verifies that the tiling corresponds to an accept-

ing run of B. Accordingly, a local state of A holds a set of active R-spheres,

i.e., a set of spheres that play a role in its immediate environment of distance

at most R. Each local state s (apart from the initial states, as we will see) car-

ries exactly one extended R-sphere ((E,C, λ, γ, e), i) ∈ S+ with γ = e, which

means that a run of B assigns the state associated with γ to the event that cor-

4.4. MPAs vs. EMSO-definable MSC Languages 75

c

a

e

b

d

f

g

(2!3, q2)

(1!2, q0)

(1!2, q1)

(2?1, q0)

(2?1, q2)

(3?2, q3)

(3?1, q3)

(a)

(2?1, q0)

(1!2, q1)

(1!2, q1)

(2?1, q2)

(2?1, q3)

(b)

Figure 4.4: The sphere(s) of a graph acceptor over (Act , Pc)

1!2 2?1 1!2 2?1

1!2

1!2

1!2

2?1 1!2

1!2

2?1

1!2

1!2 2?1 1!2 2?1

2?1

1!2

2?1

2?1 1!2

2?1

2?1

2?1

Figure 4.5: A graph acceptor over (Act , Pc)

responds to s. To establish isomorphism between (E,C, λ, γ) and the R-sphere

induced by s, s transfers/obtains its obligations in form of an extended R-sphere

((E,C, λ, γ, e′), i) to/from its immediate neighbors, respectively. For example,

provided e is labeled with a send action and there is e′ ∈ E with e Cc e
′, the

message to be sent when entering state s will contain ((E,C, λ, γ, e′), i), which,

in turn, the receiving process understands as a requirement to be satisfied. As

there may be an overlapping of isomorphic R-spheres, a state can hold several

instances of one and the same sphere, which then refer to distinct states/events

as corresponding sphere centers. Those instances will be distinguished by means

of the natural i. The benefit of i will become clearer before long.

Let us turn to the construction of A = ((Ap)p∈P ,D, s
in , F), Ap = (Sp,∆p), which

is given as follows: For p ∈ P , a local state of Ap is a pair (S, ν) where

76 Chapter 4. Message-Passing Automata

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1

Figure 4.6: The run of a graph acceptor

– ν is a mapping Sp → {0, . . . ,max(Occ)}

(let in the following ν0
p denote the function that maps each R-sphere H ∈ Sp

to 0) and

– S is either the empty set or it is a subset of S+
p such that

• there is exactly one extended R-sphere ((E,C, λ, γ, e), i) ∈ S with

γ = e (whose component (E,C, λ, γ) we identify by ς(S) from now

on) and

• for any two ((E,C, λ, γ, e), i), ((E ′,C′, λ′, γ′, e′), i′) ∈ S,

(a) λ(e) = λ′(e′) ∈ Actp × Q (so that we can assign a well-defined

unique label λ(S) ∈ Actp × Q to S, namely the labeling λ(e) for

some ((E,C, λ, γ, e), i) ∈ S) and

(b) if (E,C, λ, γ) ∼= (E ′,C′, λ′, γ′) and i = i′, then e = e′.

The set D of synchronization messages is the cartesian product 2S
+
× 2S

+
.

Roughly speaking, the first component of a message contains obligations the

receiving state/event has to satisfy, while the second component imposes require-

ments that must not be satisfied by the receiving process to ensure isomorphism.

We now turn towards the definition of ∆p and define ((S, ν), σ, (P,N), (S ′, ν ′)) ∈

∆p if the following hold:

1. λ(S ′) = (σ, q) for some q ∈ Q.

2. For any ((E,C, λ, γ, e), i) ∈ S and e′ ∈ Ep, if ((E,C, λ, γ, e′), i) ∈ S ′, then

e Cp e
′.

3. For any ((E,C, λ, γ, e), i) ∈ S ′, if S 6= ∅ and e is minimal in (Ep,≤p), then

d(e, γ) = R.

4.4. MPAs vs. EMSO-definable MSC Languages 77

4. For any ((E,C, λ, γ, e), i) ∈ S, if e is maximal in (Ep,≤p), then d(e, γ) = R.

5. For any ((E,C, λ, γ, e), i) ∈ S ′, if e is not minimal in (Ep,≤p), then we

have ((E,C, λ, γ, e−), i) ∈ S where e− ∈ Ep is the unique event satisfying

e− Cp e.

6. For any ((E,C, λ, γ, e), i) ∈ S, if e is not maximal in (Ep,≤p), then we

have ((E,C, λ, γ, e+), i) ∈ S ′ where e+ ∈ Ep is the unique event such that

e Cp e
+.

7. (i) In case that σ = p!q for some q ∈ P :

(a) for any ((E,C, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e Cc e
′, then we

have ((E,C, λ, γ, e′), i) ∈ P,

(b) for any ((E,C, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e 6Cc e
′, then we

have ((E,C, λ, γ, e′), i) ∈ N , and

(c) for any ((E,C, λ, γ, e), i) ∈ P, there is e′ ∈ E such that e′ Cc e

and ((E,C, λ, γ, e′), i) ∈ S ′.

(ii) In case that σ = p?q for some q ∈ P :

(a) P ⊆ S ′,

(b) N ∩ S ′ = ∅, and

(c) for any ((E,C, λ, γ, e′), i) ∈ S ′, if there is e ∈ E with e Cc e
′, then

((E,C, λ, γ, e′), i) ∈ P.

8. ν ′ = ν[ς(S ′)/min{ν(ς(S ′)) + 1,max(Occ)}] (i.e., ν ′ maps ς(S ′) to the min-

imum of ν(ς(S ′)) + 1 and max(Occ) and, otherwise, coincides with ν).

Thus, Condition 1. guarantees that any state within a run has the same labeling as

the event it is assigned to. Condition 2. makes sure that, whenever there is a Cp-

edge in the input MSC, then there is a corresponding edge in the extended sphere

that is passed from the source to the target state of the corresponding transition.

Conversely, if there is no Cp-edge between two nodes in the extended sphere, then

it must not be passed directly to impose the same behavior on the MSC, i.e., the

corresponding events in the MSC must not touch each other. Conditions 3. and,

dually, 4. make sure that a sphere that does not make use of the whole radius R

is employed in the initial or final phase of a run, only. By Conditions 5. and 6.,

extended spheres must be passed along a process line as far as possible, hereby

starting in a minimal and ending in a maximal active node. Condition 7. ensures

the corresponding beyond process lines, i.e., for messages. Finally, Condition 8.

guarantees that the second component of each state correctly keeps track of the

number of spheres used so far.

78 Chapter 4. Message-Passing Automata

Furthermore, sin = ((∅, ν0
p))p∈P and, for (Sp, νp) ∈ Sp, ((Sp, νp))p∈P ∈ F if the

union of mappings νp satisfies the requirements imposed by Occ and, for all p ∈ P

and ((E,C, λ, γ, e), i) ∈ Sp, e is maximal in (Ep,≤p).

In fact, it holds L(A) = L ��� � (B):

Let ρ : Ẽ → Q be an accepting run of B on M = (Ẽ, {C̃p}p∈P , C̃c, λ̃) ∈
�����

and let ρ̂ denote the mapping Ẽ → S that maps an event e ∈ Ẽ onto the

R-sphere of (Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)) around e. In an accepting run (r,m) of A

on M , r basically assigns to an event e ∈ Ẽ—apart from the obvious mapping

ν—the set of those extended spheres ((E,C, λ, γ, e0), i) ∈ S+ such that there is

an event e′ ∈ Ẽ with both dM(e′, e) ≤ R and (E,C, λ, γ, e0) is isomorphic to

(ρ̂(e′), e). Hereby, 4 · maxE 2 + 1 is sufficiently large to guarantee an instance

labeling that is consistent with the transition relation of A. If we suppose m :

C̃c → D to map a pair (es, er) ∈ C̃c onto (P,N) where (set (S, ν) to be r(es))

P = {((E,C, λ, γ, e′0), i) ∈ S+ | there is e0 ∈ E with ((E,C, λ, γ, e0), i) ∈ S

and e0 Cc e
′
0} and N = {((E,C, λ, γ, e′0), i) ∈ S+ | there is e0 ∈ E such that

((E,C, λ, γ, e0), i) ∈ S and e0 6Cc e
′
0}, (r,m) is an accepting run of A on M .

Conversely, let (r,m) be an accepting run of A on M = (E, {Cp}p∈P ,Cc, λ) ∈
�����

. If we define ρ : E → Q to map an event e ∈ E to the control state that is

associated with the sphere center of ς(S) where r(e) = (S, ν) for some ν, then ρ

turns out to be an accepting run of B on M .

Let us be more precise:

Claim 4.4.5 L ��� � (B) ⊆ L(A)

Proof of Claim 4.4.5. Let ρ : Ẽ → Q be an accepting run of B on the MSC

M = (Ẽ, {C̃p}p∈P , C̃c, λ̃) ∈
�����

and let in the following C̃ denote C̃c ∪
⋃

p∈P C̃p

and ρ̂ stand for the mapping Ẽ → S that maps an event e ∈ Ẽ onto the R-sphere

of (Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)) around e. We show that there is an accepting run of

A on M .

Consider Figure 4.7 on the facing page, which depicts an MSC inducing two

isomorphic spheres, say of type H. Obviously, e′0 is actually not allowed to carry

H forward. As the example shows, however, both e0 and e′0 must be able to

carry distinct copies of H as long as they defer to distinct events of the MSC at

hand as sphere centers. This is accomplished by enabling a state to carry even

controversial spheres, which are then equipped with distinct instances deferring to

distinct events as sphere centers. The following claim states that an assignment

of instances, which resolves such a conflict and where the number of required

instances only depends on B, is always possible.

4.4. MPAs vs. EMSO-definable MSC Languages 79

e0

e′0

Figure 4.7: Why we need different instances of extended spheres

80 Chapter 4. Message-Passing Automata

Claim 4.4.6 There is a mapping χM,ρ : Ẽ → {1, . . . , 4 · maxE 2 + 1} such that,

for any e, e′, e0, e
′
0 ∈ Ẽ with ρ̂(e) ∼= ρ̂(e′), e 6= e′, d(e0, e) ≤ R, and d(e′0, e

′) ≤ R,

if e0 C̃ e′0 or e′0 C̃ e0 or e0 = e′0, then χM,ρ(e) 6= χM,ρ(e
′).

Proof of Claim 4.4.6. We can reduce the existence of χM,ρ to the existence of a

graph coloring. Recall some basic definitions: A graph G is a structure (V,Arcs)

where V is a finite set of vertices and Arcs ⊆ V × V is a set of arcs. For a

natural n ≥ 1, a graph G = (V,Arcs) is called n-colorable if there is a mapping

χ : V → {1, . . . , n} such that (u, v) ∈ Arcs implies χ(u) 6= χ(v) for any two

nodes u, v ∈ V (we then say that G is n-colored by χ). Furthermore, for d ∈ IN,

G is said to be of degree d if d = max{|Arcs(u)| | u ∈ V } where, for u ∈ V ,

Arcs(u) = {v ∈ V | (u, v) ∈ Arcs or (v, u) ∈ Arcs}. It is easy to show that, for

any d ∈ IN and any graph G of degree d without self-loops, G is (d+1)-colorable.

The mapping χM,ρ can now be obtained as follows: Let G be the graph (Ẽ,Arcs)

where, for any e, e′ ∈ Ẽ, (e, e′) ∈ Arcs iff e 6= e′, ρ̂(e) ∼= ρ̂(e′), and there is

e0, e
′
0 ∈ Ẽ with d(e0, e) ≤ R, d(e′0, e

′) ≤ R, and (e0 C̃ e′0 or e′0 C̃ e0 or e0 = e′0).

As G cannot be of degree greater than 4 · maxE 2 (for each e ∈ Ẽ, there are at

most four distinct events e′ ∈ Ẽ such that e C̃ e′, e′ C̃ e, or e = e′), it can be

4 ·maxE 2 + 1-colored by some mapping χ : Ẽ → {1, . . . , 4 ·maxE 2 + 1}. Now set

χM,ρ to be χ. This concludes the proof of Claim 4.4.6. �

Now let χM,ρ be the mapping from the above construction. For H ∈ S and

e ∈ Ẽ, let furthermore leM(H, e) = |{e′ ∈ ẼP (e) | e
′ ≤̃P (e) e, H ∼= ρ̂(e′)}| and the

mapping r : Ẽ →
⋃

p∈P Sp be given as follows: for e ∈ Ẽ, we define r(e) = (S, ν)

where

1. ((E,C, λ, γ, e0), i) ∈ S iff there is an event e′ ∈ Ẽ such that d(e′, e) ≤ R,

(E,C, λ, γ, e0) ∼= (ρ̂(e′), e), and i = χM,ρ(e
′), and

2. for H ∈ SP (e), ν(H) = min{leM(H, e),max(Occ)}.

For e ∈ Ẽ, we first verify that, in fact, r(e) = (S, ν) is a valid state of A. So

suppose there are extended R-spheres ((E,C, λ, γ, e0), i), ((E
′,C′, λ′, γ′, e′0), i

′) ∈

S. Of course, it holds λ(e0) = λ′(e′0). Assume now that both γ = e0 and γ′ =

e′0. But then the requirements (E,C, λ, γ, γ) ∼= (ρ̂(e), e) and (E ′,C′, λ′, γ′, γ′) ∼=
(ρ̂(e), e) imply (E,C, λ, γ, γ) ∼= (E ′,C′, λ′, γ′, γ′). In particular, it holds ς(S) =

(E,C, λ, γ) ∼= ρ̂(e). Furthermore, i = i′ = χM,ρ(e). Now assume (E,C, λ, γ) ∼=
(E ′,C′, λ′, γ′) and i = i′. There are events e1, e2 ∈ Ẽ such that d(e1, e) ≤ R,

d(e2, e) ≤ R, (E,C, λ, γ, e0) ∼= (ρ̂(e1), e), (E,C, λ, γ, e′0)
∼= (ρ̂(e2), e), and i =

χM,ρ(e1) = χM,ρ(e2). Clearly, we have ρ̂(e1) ∼= ρ̂(e2). Furthermore, e1 = e2 and,

consequently, e0 = e′0. This is because e1 6= e2, according to Claim 4.4.6, implies

χM,ρ(e1) 6= χM,ρ(e2), which contradicts the premise.

4.4. MPAs vs. EMSO-definable MSC Languages 81

Let m : C̃c → D map a pair (es, er) ∈ C̃c onto (P,N) where (set (S, ν) to be

r(es)) P = {((E,C, λ, γ, e′0), i) ∈ S+ | there is e0 ∈ E with ((E,C, λ, γ, e0), i) ∈ S

and e0 Cc e
′
0} and N = {((E,C, λ, γ, e′0), i) ∈ S+ | there is e0 ∈ E such that

((E,C, λ, γ, e0), i) ∈ S and e0 6Cc e
′
0}. In the following, we verify that (r,m) is a

run of A on M . For any distinct processes p, q ∈ P , e ∈ Ẽp, and er ∈ Ẽq with

e C̃c er, we check that (r−(e), λ̃(e), m((e, er)), r(e)) ∈ ∆p. So set (S, ν) to be

r−(e) and (S ′, ν ′) to be r(e).

1. Of course, λ(S ′) = (λ̃(e), q) for some q ∈ Q.

2. Let ((E,C, λ, γ, e0), i) ∈ S and ((E,C, λ, γ, e′0), i) ∈ S ′ for some e′0 ∈ Ep

and let e− ∈ Ẽp such that e− C̃p e (as S 6= ∅, such an e− must exist). There

is e−
′
, e′ ∈ Ẽ such that d(e−

′
, e−) ≤ R, d(e′, e) ≤ R, (E,C, λ, γ, e0) ∼=

(ρ̂(e−
′
), e−), (E,C, λ, γ, e′0)

∼= (ρ̂(e′), e), and i = χM,ρ(e
−′

) = χM,ρ(e
′).

We show e−
′
= e′, as then (E,C, λ, γ, e0) ∼= (ρ̂(e′), e−), (E,C, λ, γ, e′0)

∼=
(ρ̂(e′), e), and e− C̃p e imply e0 Cp e

′
0. But e−

′ 6= e′, according to Claim

4.4.6, implies χM,ρ(e
′) 6= χM,ρ(e), which leads to a contradiction to the

above assumption.

3. Suppose S 6= ∅ and suppose there is ((E,C, λ, γ, e0), i) ∈ S ′ with e0 minimal

in (Ep, <p). There is e′ ∈ Ẽ such that d(e′, e) ≤ R and (E,C, λ, γ, e0) ∼=
(ρ̂(e′), e). As S 6= ∅, e is not minimal in (Ẽp, <̃p) and, consequently,

d(γ, e0) = d(e′, e) = R (if d(e′, e) < R, e would have to be minimal in

(Ẽp, <̃p)).

4. Let ((E,C, λ, γ, e0), i) ∈ S with e0 maximal in (Ep, <p) and let e− ∈ Ẽp

such that e− C̃p e. Furthermore, as r−(e) = r(e−), there is e−
′ ∈ Ẽ

such that both d(e−
′
, e−) ≤ R and (E,C, λ, γ, e0) ∼= (ρ̂(e−

′
), e−). As e− is

not maximal in (Ẽp, <̃p), d(e0, γ) = d(e−
′
, e−) = R (analogously to 3., if

d(e−
′
, e−) < R, e− would have to be maximal in (Ẽp, <̃p)).

5. Suppose there is an extended R-sphere ((E,C, λ, γ, e0), i) ∈ S ′ with e0 not

minimal in (Ep, <p). Let e−0 ∈ E such that e−0 Cp e0. As r(e) = (S ′, ν ′),

there is e′ ∈ Ẽ with d(e′, e) ≤ R such that (E,C, λ, γ, e0) ∼= (ρ̂(e′), e) and

i = χM,ρ(e
′). As a consequence, e is not minimal in (Ẽp, <̃p) so that there

is e− ∈ Ẽ with e− C̃p e. As, furthermore, d(e′, e−) = d(γ, e−0) ≤ R and

(E,C, λ, γ, e−0) ∼= (ρ̂(e′), e−), it holds ((E,C, λ, γ, e−0), i) ∈ S.

6. Suppose there is an extended R-sphere ((E,C, λ, γ, e0), i) ∈ S (then e is

not minimal in (Ẽp, <̃p), so let e− ∈ Ẽp such that e− C̃p e) with e0 not

maximal in (Ep, <p). Let e+
0 ∈ E such that e0 Cp e

+
0 . As we have r−(e) =

r(e−) = (S, ν), there exists e−
′ ∈ Ẽ with d(e−

′
, e−) ≤ R, (E,C, λ, γ, e0) ∼=

82 Chapter 4. Message-Passing Automata

(ρ̂(e−
′
), e−), and i = χM,ρ(e

−′
). Since then d(e−

′
, e) = d(γ, e+

0) ≤ R and

also (E,C, λ, γ, e+
0) ∼= (ρ̂(e−

′
), e), we have ((E,C, λ, γ, e+

0), i) ∈ S ′.

7. Let P,N ⊆ S+ such that m((e, er)) = (P,N).

(a) Let ((E,C, λ, γ, e0), i) ∈ S ′ and e′0 ∈ E. According to the definition of

m, e0 Cc e
′
0 implies ((E,C, λ, γ, e′0), i) ∈ P.

(b) Let ((E,C, λ, γ, e0), i) ∈ S ′ and e′0 ∈ E. According to the definition of

m, e0 6Cc e
′
0 implies ((E,C, λ, γ, e′0), i) ∈ N .

(c) Let ((E,C, λ, γ, e0), i) ∈ P. Then, due to the definition of P, there is

e′0 ∈ E with e′0 Cc e0 and ((E,C, λ, γ, e′0), i) ∈ S ′.

8. As ς(S ′) ∼= ρ̂(e) and |{e′ ≤̃p e | ς(S
′) ∼= ρ̂(e′)}| = |{e′ <̃p e | ς(S ′) ∼= ρ̂(e′)}|+

1, we have ν ′(ς(S ′)) = min{|{e′ <̃p e | ς(S ′) ∼= ρ̂(e′)}| + 1,max(Occ)}.

Furthermore, ν ′(H) = ν(H) if H 6= ς(S ′).

Verifying (r−(e), λ̃(e), m((es, e)), r(e)) ∈ ∆p for any e ∈ Ẽp and es ∈ Ẽ with

es C̃c e differs from the above scheme only in point 7. (set (S, ν) to be r(es) and

(S ′, ν ′) to be r(e) and let P,N ⊆ S+ such that m((es, e)) = (P,N)):

7. (a) Suppose there is ((E,C, λ, γ, e′0), i) ∈ P. Then there exists e0 ∈ E with

((E,C, λ, γ, e0), i) ∈ S and e0 Cc e
′
0. Due to ((E,C, λ, γ, e0), i) ∈ S,

there is e′s ∈ Ẽ with d(e′s, es) ≤ R, (E,C, λ, γ, e0) ∼= (ρ̂(e′s), es), and

i = χM,ρ(e
′
s). As then d(e′s, e) = d(γ, e′0) ≤ R and (E,C, λ, γ, e′0)

∼=
(ρ̂(e′s), e), ((E,C, λ, γ, e′0), i) ∈ S ′.

(b) Suppose there is ((E,C, λ, γ, e′0), i) ∈ N ∩ S ′. Then there is e0 ∈ E

with ((E,C, λ, γ, e0), i) ∈ S and e0 6Cc e
′
0. Due to ((E,C, λ, γ, e0), i) ∈

S, there is e′s ∈ Ẽ satisfying d(e′s, es) ≤ R, (E,C, λ, γ, e0) ∼= (ρ̂(e′s), es),

and i = χM,ρ(e
′
s). Due to ((E,C, λ, γ, e′0), i) ∈ S ′, there is also e′ ∈

Ẽ with d(e′, e) ≤ R, (E,C, λ, γ, e′0)
∼= (ρ̂(e′), e), and i = χM,ρ(e

′).

Suppose e′s 6= e′. But then, as ρ̂(e′s)
∼= ρ̂(e′), χM,ρ(e

′
s) 6= χM,ρ(e

′),

which leads to a contradiction. Now suppose e′s = e′. But then es C̃c e

implies e0 Cc e
′
0, also contradicting the premise.

(c) Suppose now there exist ((E,C, λ, γ, e′0), i) ∈ S ′ and e0 ∈ E with e0 Cc

e′0. Then there is an event e′ ∈ Ẽ with d(e′, e) ≤ R, (E,C, λ, γ, e′0)
∼=

(ρ̂(e′), e), and i = χM,ρ(e
′). As we have d(e′, es) = d(γ, e0) ≤ R and

(E,C, λ, γ, e0) ∼= (ρ̂(e′), es), it holds ((E,C, λ, γ, e0), i) ∈ S and, thus,

((E,C, λ, γ, e′0), i) ∈ P.

In the following, we verify that (r,m) is accepting. So set, given p ∈ P , (Sp, νp)

to be (∅, ν0
p) if Ẽp is empty and, otherwise, (Sp, νp) to be r(ep) where ep ∈ Ẽp

4.4. MPAs vs. EMSO-definable MSC Languages 83

is the maximal event wrt. ≤̃p. Clearly, the union of mappings νp carries, for

each H ∈ S, the number of occurrences of H in ρ̂. Furthermore, for all p ∈ P

and ((E,C, λ, γ, e0), i) ∈ Sp, e0 is maximal in (Ep, <p). Because suppose there is

e′0 ∈ E with e0 Cp e
′
0. But then, as there exists no e+ ∈ Ẽ satisfying ep C̃p e

+,

there is no e′ ∈ Ẽ either with d(e′, ep) ≤ R such that (E,C, λ, γ, e0) ∼= (ρ̂(e′), ep),

which contradicts the definition of r. This concludes the proof of Claim 4.4.5. �

Claim 4.4.7 L(A) ⊆ L ��� � (B)

Proof of Claim 4.4.7. Let (r,m) be an accepting run of A on the MSC M =

(Ẽ, {C̃p}p∈P , C̃c, λ̃) ∈
�����

(again, let C̃ denote C̃c ∪
⋃

p∈P C̃p). We define

ρ : Ẽ → Q to map an event e ∈ Ẽ to the control state that is associated with

the sphere center of ς(S) where r(e) = (S, ν) for some ν. In other words, let

ρ be given by ρ(e) = q if there are S, ν, and σ such that r(e) = (S, ν) and

λ(S) = (σ, q). Then ρ turns out to be an accepting run of B on M . First, let ρ̂ be

the mapping Ẽ → S with ρ̂(e) = H if there are S and ν such that r(e) = (S, ν)

and H = ς(S). For an extended R-sphere ((E,C, λ, γ, e0), i) ∈ S+ and e ∈ Ẽ, we

often write ((E,C, λ, γ, e0), i) ∈ r(e) if there are S and ν such that r(e) = (S, ν)

and ((E,C, λ, γ, e0), i) ∈ S.

Claim 4.4.8 For each e ∈ Ẽ, ((E,C, λ, γ, ē), i) ∈ r(e), and d ∈ IN, if there is a

sequence of events e0, . . . , ed ∈ E such that e0 = ē and, for each k ∈ {0, . . . , d−1},

ek C ek+1 or ek+1 C ek, then there is a unique sequence of events ê0, . . . , êd ∈ Ẽ

with

– ê0 = e,

– for each k ∈ {0, . . . , d}, ((E,C, λ, γ, ek), i) ∈ r(êk), and

– for each k ∈ {0, . . . , d − 1}, êk C̃ êk+1 iff ek C ek+1 and êk+1 C̃ êk iff

ek+1 C ek.

Proof of Claim 4.4.8. We proceed by induction. Obviously, the statement holds

for d = 0. Now assume there is a sequence of events e0, . . . , ed, ed+1 ∈ E such

that e0 = ē and, for each k ∈ {0, . . . , d}, ek C ek+1 or ek+1 C ek. By induction

hypothesis, there is a unique sequence of events ê0, . . . , êd ∈ Ẽ with

– ê0 = e,

– for each k ∈ {0, . . . , d}, ((E,C, λ, γ, ek), i) ∈ r(êk) (in particular, λ(ek) =

(λ̃(êk), q) for some q ∈ Q), and

84 Chapter 4. Message-Passing Automata

– for each k ∈ {0, . . . , d− 1}, êk C̃ êk+1 iff ek C ek+1 (which implies, for one

thing, êk C̃c êk+1 iff ek Cc ek+1) and êk+1 C̃ êk iff ek+1 C ek.

Suppose that

– ed Cp ed+1 for some p ∈ P . As ed is not maximal in (Ep, <p), r(êd) can-

not be part of a final state so that there is a (unique) event êd+1 ∈ Ẽ

with êd C̃p êd+1. Furthermore, due to item 6. from the definition of ∆p,

((E,C, λ, γ, ed+1), i) ∈ r(êd+1).

– ed+1 Cp ed for some p ∈ P . As ed is not minimal in (Ep, <p), there is,

according to item 5. from the definition of ∆p, a (unique) event êd+1 ∈ Ẽ

with êd+1 C̃p êd and ((E,C, λ, γ, ed+1), i) ∈ r(êd+1).

– ed Cc ed+1. There is a (unique) event êd+1 ∈ Ẽ with êd C̃c êd+1. Set (P,N)

to be m((êd, êd+1)). According to item 7. (i) (a) from the definition of ∆p,

((E,C, λ, γ, ed+1), i) ∈ P. With 7. (ii) (a), it follows ((E,C, λ, γ, ed+1), i) ∈

r(êd+1).

– ed+1 Cc ed. There is a (unique) event êd+1 ∈ Ẽ with êd+1 C̃c êd. Set (P,N)

to be m((êd+1, êd)). According to item 7. (ii) (c) from the definition of ∆p,

((E,C, λ, γ, ed), i) ∈ P. With 7. (i) (c), it follows ((E,C, λ, γ, ed+1), i) ∈

r(êd+1).

This concludes the proof of Claim 4.4.8. �

We have to show that, for each e ∈ Ẽ, the R-sphere of (Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ))

around e is isomorphic to ρ̂(e). So let e ∈ Ẽ and set (E,C, λ, γ) to be ρ̂(e) and

i ∈ {1, . . . , 4 ·maxE 2 +1} to be the unique element with ((E,C, λ, γ, γ), i) ∈ r(e).

Claim 4.4.9 For each d ∈ {0, . . . , R}, there is an isomorphism

h : d-Sph((Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)), e) → d-Sph((E,C, λ), γ)

such that, for each ê ∈ Ẽ with d(ê, e) ≤ d, ((E,C, λ, γ, h(ê)), i) ∈ r(ê).

Proof of Claim 4.4.9. We proceed by induction. The statement holds for d = 0.

Now assume d < R and there is an isomorphism h : d-Sph((Ẽ, {C̃p}p∈P , C̃c

, (λ̃, ρ)), e) → d-Sph((E,C, λ), γ) such that, for each ê ∈ Ẽ with d(ê, e) ≤ d,

((E,C, λ, γ, h(ê)), i) ∈ r(ê).

4.4. MPAs vs. EMSO-definable MSC Languages 85

Extended sphere simulates MSC Suppose there is ê1, ê
′
1, ê2, ê

′
2 ∈ Ẽ such

that d(ê1, e) = d(ê2, e) = d, d(ê′1, e) = d(ê′2, e) = d + 1, (ê1 C̃ ê′1 or ê′1 C̃ ê1), and

(ê2 C̃ ê′2 or ê′2 C̃ ê2). Furthermore, suppose (let e1 and e2 denote h(ê1) and h(ê2),

respectively)

– ê1 C̃p ê
′
1 for some p ∈ P . As d(ê1, e) < R, we have d(e1, γ) < R. Due to

item 4. from the definition of ∆p, e1 is not maximal in (Ep, <p) so that there

is e′1 ∈ E with e1 Cp e
′
1 and, due to item 6. and ((E,C, λ, γ, e1), i) ∈ r(ê1),

((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– ê′1 C̃p ê1 for some p ∈ P . As d(ê1, e) is less than R, so is d(e1, γ). Due to

item 3. from the definition of ∆p, e1 is not minimal in (Ep, <p) so that there

is e′1 ∈ E with e′1 Cp e1 and, due to item 5. and ((E,C, λ, γ, e1), i) ∈ r(ê1),

((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– ê1 C̃c ê
′
1. Set (P,N) to be m((ê1, ê

′
1)). As d(ê1, e) < R and, thus, d(e1, γ) <

R, there is e′1 ∈ E such that e1 Cc e
′
1. (This is because (E,C, λ, γ) can be

embedded into some MSC.) According to item 7. (i) (a) from the definition

of ∆p, ((E,C, λ, γ, e′1), i) ∈ P. Due to item 7. (ii) (a), it then follows from

((E,C, λ, γ, e1), i) ∈ r(ê1) that ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– ê′1 C̃c ê1. Set (P,N) to be m((ê′1, ê1)). As d(ê1, e) < R and, conse-

quently, d(e1, γ) < R, there is also e′1 ∈ E such that e′1 Cc e1. (Recall

that (E,C, λ, γ) can be embedded into some MSC.) According to item 7.

(ii) (c) from the definition of ∆p, ((E,C, λ, γ, e1), i) ∈ P. Due to item 7. (i)

(c), it then follows that ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

Thus, depending on ê′1, we obtain from e1 a unique event e′1 ∈ E, which we

denote by h′(ê′1). According to the above scheme, we obtain from e2 a unique

event e′2 ∈ E, denoted by h′(ê′2). It holds d(e′1, γ) = d(e′2, γ) = d+1. Now suppose

– ê′1 C̃p ê
′
2 for some p ∈ P . As we already have ((E,C, λ, γ, e′1), i) ∈ r(ê′1) and

((E,C, λ, γ, e′2), i) ∈ r(ê′2), it follows from item 2. of the definition of ∆p

that e′1 Cp e
′
2.

– ê′1 C̃c ê
′
2. Set (P,N) to be m((ê′1, ê

′
2)) and suppose e′1 Cc e

′
2 does not hold.

But then, according to items 7. (i) (b) and 7. (ii) (b) from the definition

of ∆p, ((E,C, λ, γ, e′2), i) ∈ N and ((E,C, λ, γ, e′2), i) 6∈ r(ê′2), resulting in a

contradiction.

– ê′1 = ê′2. Then ((E,C, λ, γ, e′1), i) ∈ r(ê′1) and ((E,C, λ, γ, e′2), i) ∈ r(ê′1)

implies e′1 = e′2 (otherwise, r(ê′1) would not be a valid state of A).

The cases ê′2 C̃p ê
′
1 and ê′2 C̃c ê

′
1 are handled analogously.

86 Chapter 4. Message-Passing Automata

MSC simulates extended sphere Suppose there is e1, e
′
1, e2, e

′
2 ∈ E such

that d(e1, γ) = d(e2, γ) = d, d(e′1, γ) = d(e′2, γ) = d+ 1, (e1 C e′1 or e′1 C e1) and

(e2 C e′2 or e′2 C e2). We now proceed as in the proof of Claim 4.4.8. So suppose

(let ê1 and ê2 denote h−1(e1) and h−1(e2), respectively)

– e1 Cp e
′
1 for some p ∈ P . As e1 is not maximal in (Ep, <p), r(ê1) cannot

be part of a final state so that there is ê′1 ∈ Ẽ with ê1 C̃p ê
′
1. Furthermore,

due to item 6. from the definition of ∆p, ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– e′1 Cp e1 for some p ∈ P . As e1 is not minimal in (Ep, <p) there is, ac-

cording to item 5. from the definition of ∆p, ê
′
1 ∈ Ẽ with ê′1 C̃p ê1 and

((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– e1 Cc e
′
1. There is ê′1 ∈ Ẽ with ê1 C̃c ê

′
1. Set (P,N) to be m((ê1, ê

′
1)).

According to item 7. (i) (a) from the definition of ∆p, ((E,C, λ, γ, e′1), i) ∈

P. With 7. (ii) (a), it follows ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– e′1 Cc e1. There is ê′1 ∈ Ẽ with ê′1 C̃c ê1. Set (P,N) to be m((ê′1, ê1)).

According to item 7. (ii) (c) from the definition of ∆p, ((E,C, λ, γ, e1), i) ∈

P. With 7. (i) (c), it follows ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

According to the above scheme, we obtain from ê2 a unique event ê′2. Now suppose

– e′1 Cp e′2 for some p ∈ P . Assume ê′1 6C̃p ê′2. According to the defini-

tion of the set of states of A, e′1 6= e′2, ((E,C, λ, γ, e′1), i) ∈ r(ê′1), and

((E,C, λ, γ, e′2), i) ∈ r(ê′2) implies ê′1 6= ê′2. But then, following the scheme

depicted in Figure 4.8, we can construct an infinite sequence x1, x2, . . . ∈ Ẽ

inducing an infinite set of (pairwise distinct) events: Suppose ê′1 <̃p ê′2.

(The other case is handled analogously.) Set x1 ∈ Ẽ to be the unique event

satisfying ê′1 C̃p x1. We have ((E,C, λ, γ, e′2), i) ∈ r(x1) and x1 <̃p ê
′
2. Ac-

cording to Claim 4.4.8, there is x2 ∈ Ẽ such that ((E,C, λ, γ, γ), i) ∈ r(x2)

and x2 <̃P (e) e. (There is a path in (E,C, λ) from e′2 to γ that, accord-

ing to Claim 4.4.8, takes M from ê′2 to e. Apply this path to x1 yielding

a path to a unique event x2 ∈ Ẽ with ((E,C, λ, γ, γ), i) ∈ r(x2). From

x1 <̃p ê′2, it easily follows that x2 <̃P (e) e.) Similarly, there is x3 ∈ Ẽ

with ((E,C, λ, γ, e′1), i) ∈ r(x3) and x3 <̃p ê′1. Now let x4 ∈ Ẽ be the

unique event such that x3 C̃p x4 and ((E,C, λ, γ, e′2), i) ∈ r(x4) (as already

((E,C, λ, γ, e′1), i) ∈ r(ê′1), it holds x4 <̃p ê
′
1) and let, again following Claim

4.4.8, x5 ∈ Ẽ be an event with ((E,C, λ, γ, γ), i) ∈ r(x5) and x5 <̃P (x2) x2

and x6 ∈ Ẽ be an event with ((E,C, λ, γ, e′1), i) ∈ r(x6) and x6 <̃p x3.

Continuing this scheme yields an infinite set of events, contradicting the

premise that we deal with finite MSCs.

4.4. MPAs vs. EMSO-definable MSC Languages 87

ê′2

x1

ê′1

x4

x3

x6

e

x2

x5

((E,C, λ, γ, e′2), i)

((E,C, λ, γ, e′2), i)

((E,C, λ, γ, e′1), i)

((E,C, λ, γ, e′2), i)

((E,C, λ, γ, e′1), i)

((E,C, λ, γ, e′1), i)

((E,C, λ, γ, γ), i)

((E,C, λ, γ, γ), i)

((E,C, λ, γ, γ), i)

Figure 4.8: An infinite sequence of events

– e′1 Cc e
′
2. Assuming ê′1 6C̃c ê

′
2, we proceed according to the very same scheme

as in case e′1 Cp e
′
2 to generate an infinite sequence x1, x2, . . . ∈ Ẽ inducing

an infinite set of events, i.e., set x1 ∈ Ẽ to be the unique event such that

ê′1 C̃c x1 and ((E,C, λ, γ, e′2), i) ∈ r(x1). Assuming x1 <̃P (be′2) ê
′
2, we can

find x2 ∈ Ẽ with ((E,C, λ, γ, γ), i) ∈ r(x2) and x2 <̃P (e) e and so on.

– e′1 = e′2. Again, assuming ê′1 6= ê′2, we generate a sequence x1, x2, . . . ∈ Ẽ

inducing an infinite set of events as follows: Suppose ê′1 <̃P (be′2) ê
′
2. According

to Claim 4.4.8, we can find x1 ∈ Ẽ such that ((E,C, λ, γ, γ), i) ∈ r(x1) and

x1 <̃P (e) e. Furthermore, there is x2 ∈ Ẽ satisfying ((E,C, λ, γ, e′1), i) ∈

r(x2) and x2 <̃P (be′1) ê
′
1 and so on.

The cases e′2 Cp e
′
1 and e′2 Cc e

′
1 are handled analogously. From the above results,

we can conclude that the mapping ĥ : (d+ 1)-Sph((Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)), e) →

(d+ 1)-Sph((E,C, λ), γ) given by

ĥ(ê) =

{
h(ê) if d(ê, e) ≤ d

h′(ê) if d(ê, e) = d+ 1

(for ê ∈ Ẽ with d(ê, e) ≤ d+ 1) is an isomorphism satisfying, for any ê ∈ Ẽ with

d(ê, e) ≤ d + 1, ((E,C, λ, γ, ĥ(ê)), i) ∈ r(ê). This concludes the proof of Claim

4.4.9. �

88 Chapter 4. Message-Passing Automata

As ((Sp, νp))p∈P ∈ F only if the union of mappings νp is a model of Occ, an

accepting run of A makes sure that the number of occurrences of an R-sphere

meets the obligations imposed by B. This concludes the proof of Claim 4.4.7 and

the proof of Lemma 4.4.4. �

1!2 2?1

1!3 2!3

1!2 2?1

3?2

3?1

1!44?1

1!44?1

ea eb

eh ec

ee ed

ef

eg

Figure 4.9: Simulating a graph acceptor

Example 4.4.10 In the following, let H denote the 2-sphere in part (a) from

Figure 4.4 on page 75. Figure 4.9, showing some MSC M with four processes,

illustrates the transition behavior of the MPA A. It demonstrates how a run of

A on M transfers extensions of H from one event of M to a neighboring one to

make sure that the 2-sphere around event ec (which is indicated by solid edges) is

isomorphic to H. For example, the state that is taken on event ea may contain the

extended sphere (H, a). (For clarity, control states and the natural i to distinguish

different instances of spheres are omitted.) As a Cc b (wrt. the edge relation of

H), A passes (H, b) in form of a message to process 2. Receiving (H, b), process 2

becomes aware it should bind eb to some state that contains (H, b) (Conditions 7.

(i) (a) and 7. (ii) (a) from the definition of the transition relation). As, in H, b is

followed by c, so ec has to be associated with a state containing (H, c) (Condition

4.4. MPAs vs. EMSO-definable MSC Languages 89

6.). In contrast, eh is not allowed to carry the extended sphere (H, e), unless

it belongs to a different instance of H (Condition 2.). Now consider ed, which

holds the extended sphere (H, d). Due to Condition 5., the preceding state, which

is associated to ec, must contain (H, c), which means that a run cannot simply

enter H beginning with d. Moreover, as ed is a receive event, A has to receive

a message containing (H, d) (Condition 7. (ii) (c)). In turn, the corresponding

send event ee has to be associated with a state that holds (H, e) (Condition 7.

(i) (c)). Note that, as d(a, c) = d(e, c) = 2, the (illustrated parts of the) states

assigned to ea and ee satisfy Conditions 3. and 4.

4.4.4 1-Spheres suffice

Based on the results from the last section, we can now conclude that already graph

acceptors with radius 1 suffice to cover EMSO � ��� . In the context of pictures, a

corresponding reduction has been applied to tiling systems [GRST96].

Corollary 4.4.11

1-GA ��� � = GA ��� �

Proof Let A = ((Ap)p∈P ,D, s
in , F), Ap = (Sp,∆p), be a finite MPA. A cor-

responding graph acceptor B = (Q,R,S,Occ) over (Act , Pc) with R = 1 and

L ��� � (B) = L(A) is given as follows:

– Q =
⋃

p∈P (Sp ×D)

– for any p, q ∈ P , s0, s1, s2, s3 ∈ Sp, and (σ1, m1), (σ2, m2), (σ3, m3) ∈ Actp ×

D with (si, (σi+1, mi+1), si+1) ∈ ∆p (i = 0, 1, 2), S contains (for any ∗ ∈ Sq)

the left-hand side of the following if σ2 = p!q and the right-hand side if

σ2 = p?q:

(σ2, (s2, m2))

(σ1, (s1, m1))

(q?p, (∗, m2))

(σ3, (s3, m3))

(σ2, (s2, m2))

(σ1, (s1, m1))

(q!p, (∗, m2))

(σ3, (s3, m3))

– for any p, q ∈ P , s1, s2 ∈ Sp, and (σ1, m1), (σ2, m2) ∈ Act p × D with

(sin [p], (σ1, m1), s1) ∈ ∆p and (s1, (σ2, m2), s2) ∈ ∆p, S contains (for any

∗ ∈ Sq) the left-hand side of the following if σ1 = p!q and the right-hand

side if σ1 = p?q:

90 Chapter 4. Message-Passing Automata

(σ1, (s1, m1))

(q?p, (∗, m1))

(σ2, (s2, m2))

(σ1, (s1, m1))

(q!p, (∗, m1))

(σ2, (s2, m2))

– for any p, q ∈ P , s0, s1, s2 ∈ Sp, and (σ1, m1), (σ2, m2) ∈ Actp × D with

(s0, (σ1, m1), s1) ∈ ∆p and (s1, (σ2, m2), s2) ∈ ∆p, S contains (for any ∗ ∈

Sq) the left-hand side of the following if σ2 = p!q and the right-hand side if

σ2 = p?q:

(σ2, (s2, m2))

(σ1, (s1, m1))

(q?p, (∗, m2))

(σ2, (s2, m2))

(σ1, (s1, m1))

(q!p, (∗, m2))

– for any p, q ∈ P , s1 ∈ Sp, and (σ1, m1) ∈ Actp×D with (sin [p], (σ1, m1), s1) ∈

∆p, S contains (for any ∗ ∈ Sq) the left-hand side of the following if σ1 = p!q

and the right-hand side if σ1 = p?q:

(σ1, (s1, m1))

(q?p, (∗, m1))

(σ1, (s1, m1))

(q!p, (∗, m1))

– Occ =
∨

s∈F

∧
p∈P

∨
H∈FT p,s[p]

“H ≥ 1”

where, for p ∈ P and s ∈ Sp, FT p,s shall contain exactly those spheres

whose center is both maximal on the process line of p and labeled with s.�

In turn, the construction of an MPA from a graph acceptor with 1-spheres is a

lot easier. So let B = (Q,R,S,Occ) be a graph acceptor over (Act , Pc) with

R = 1. Again, it suffices to consider only those R-spheres H ∈ S for which there

is an extended MSC M = (E, {Cp}p∈P ,Cc, λ) ∈
����� Q, which has an extended

labeling function λ : E → Act × Q, and an event e ∈ E such that H is the

R-sphere of M around e. In particular, any sphere center γ can refer to a node

that is part of the same sphere and that can be interpreted as the corresponding

communication event.

Let us recall and introduce some notions. For p ∈ P , let Sp denote the set

of spheres (E, {Cp}p∈P ,Cc, λ, γ) ∈ S such that γ ∈ Ep. Similarly, for σ ∈

Act , Sσ is the set of spheres whose sphere center is labeled with σ (together

with some state from Q). Moreover, Smin/Smax denotes the set of all those

spheres (E, {Cp}p∈P ,Cc, λ, γ) ∈ S where γ is minimal/maximal in (EP (γ),≤P (γ)),

respectively. Finally, let max(Occ) denote the least threshold n such that Occ

does not distinguish occurrence numbers ≥ n.

4.4. MPAs vs. EMSO-definable MSC Languages 91

Now, A = ((Ap)p∈P ,D, s
in , F), Ap = (Sp,∆p), can be specified as follows: For

p ∈ P , Sp = ({ιp}] Sp) × {ν | ν : Sp → {0, . . . ,max(Occ)}}, i.e., a p-local

state of A is a pair whose first component is either ιp, which will be the p-local

initial state, or an R-sphere from Sp and whose second component is a mapping

that keeps track of the number of spheres used so far. Recall that, for p ∈ P , ν0
p

denotes the initial mapping, which maps each R-sphere H ∈ Sp to 0, and, for ν :

Sp → {0, . . . ,max(Occ)}, H ∈ Sp, and a natural n ∈ {0, . . . ,max(Occ)}, ν[H/n]

denotes the assignment that maps H to n and, otherwise, coincides with ν. The

set D of synchronization messages is the set S of R-spheres. A transition from

∆p has one of the following types (transitions from local initial states require to

be either of type (IS) or (IR), while, afterwards, only (TS)- and (TR)-transitions

can be applied):

(TS) There is a transition ((H, ν), p!q, G, (H ′, ν ′)) ∈ ∆p if there exists an extended

MSC M = (E, {Cp}p∈P ,Cc, λ) ∈
����� Q (recall that λ : E → Act ×Q) and events

e1, e ∈ E such that

1. e1 Cp e,

2. H is the R-sphere of M around e1,

3. H ′ = G ∈ Sp!q is the R-sphere of M around e, and

4. ν ′ = ν[H ′/min{ν(H ′) + 1,max(Occ)}].

(TR) There is a transition ((H, ν), p?q, G, (H ′, ν ′)) ∈ ∆p if there exists an ex-

tended MSC M = (E, {Cp}p∈P ,Cc, λ) and events e1, e2, e ∈ E such that

1. e1 Cp e and e2 Cc e,

2. H is the R-sphere of M around e1,

3. G is the R-sphere of M around e2,

4. H ′ ∈ Sp?q is the R-sphere of M around e, and

5. ν ′ = ν[H ′/min{ν(H ′) + 1,max(Occ)}].

(IS) There is a transition ((ιp, ν
0
p), p!q, G, (H

′, ν ′)) ∈ ∆p if

1. H ′ = G ∈ Sp!q ∩ Smin and

2. ν ′ = ν0
p [H

′/min{1,max(Occ)}].

92 Chapter 4. Message-Passing Automata

(IR) There is a transition ((ιp, ν
0
p), p?q, G, (H

′, ν ′)) ∈ ∆p if there exists an ex-

tended MSC M = (E, {Cp}p∈P ,Cc, λ) and events e1, e ∈ E such that

1. e1 Cc e,

2. G is the R-sphere of M around e1,

3. H ′ ∈ Sp?q ∩ Smin is the R-sphere of M around e, and

4. ν ′ = ν0
p [H

′/min{1,max(Occ)}].

The initial state sin is given by ((ιp, ν
0
p))p∈P , while a global state of A, which, for

each p ∈ P , is supposed to employ an element sp ∈ {ιp}]Sp and a mapping νp, is

contained in F if
⋃

p∈P νp (with the expected meaning) satisfies the requirements

imposed by Occ and, for all p ∈ P , sp ∈ {ιp} ∪ Smax .

Claim 4.4.12 L(A) = L ����� (B)

Proof of Claim 4.4.12. Let ρ : E → Q be an accepting run of B on the MSC

M = (E, {Cp}p∈P ,Cc, λ) and let in the following ρ̂ denote the mapping E → S

that maps an event e ∈ E onto the sphere of (E, {Cp}p∈P ,Cc, (λ, ρ)) around e.

For H ∈ S and e ∈ E, let furthermore leM,ρ(H, e) := |{e′ ∈ EP (e) | e′ ≤P (e)

e, H ∼= ρ̂(e′)}|. We then define r : E →
⋃

p∈P Sp to map an event e ∈ E onto

(ρ̂(e), ν) where, for H ∈ SP (e), ν(H) = min{leM,ρ(H, e),max(Occ)}. Finally, let

m : Cc → D map a pair (es, er) ∈ Cc onto ρ̂(es). We easily verify that (r,m) is

an accepting run of A on M .

If, conversely, (r,m) is an accepting run of A on M = (E, {Cp}p∈P ,Cc, λ) ∈
�����

and ρ : E → Q maps an event e ∈ E to the control state that is associated with

the sphere center of r(e), then ρ is an accepting run of B on M . �

One might be tempted to apply the above transformation from special graph ac-

ceptors with radius 1 into MPAs to graph acceptors with arbitrarily large radius.

However, this attempt fails. For example, consider the MSC M from Figure 4.10

and a graph acceptor B without occurrence constraints and a singleton as a state

space, which, among others, is equipped with the 4-sphere Ha from Figure 4.11,

which is the 4-sphere of M around A but with missing edge between E and F,

and furthermore contains the 4-sphere of M around B but with missing edge

between F and G, and so on (cf. Figures A.1–A.10 on pages 137–145 for formal

definitions). Now suppose B runs on M . In fact, any of the transitions (edges)

between events from {A,B,C,D,E,F,G,H, I} is witnessed by some embedding

into an (extended) MSC. More precisely, in a successful run on M , we may assign

to A sphere Ha, to B sphere Hb and so on. Though the 4-sphere of M around

4.4. MPAs vs. EMSO-definable MSC Languages 93

A

B C

DE

F G

HI

C−

0 1 2 3 4 5 6 7M :

Figure 4.10: Counterexample for the simpler transformation

A is not isomorphic to some sphere from B (in particular, it is not isomorphic to

the state assigned to A), the run is accepting. The reason is that two neighboring

transitions can be justified by two embeddings into completely different MSCs so

that the graph acceptor possibly forgets that, actually, there has to be an event

between, say, E and F to ensure isomorphism between a sphere and the MSC. In

other words, it is possible to “carry around” the missing edge without the need

to actually ensure that there is an event in between instead of just one edge.

Let us discuss one transition in more detail. In the sense of the definition from

page 91, the transition (He, 3?4, Hg, Hf) of type (TR) (recall that we disregard

occurrence constraints) is a valid one, as witnessed by the MSC Megf from Figure

A.5 on page 140. In Megf, the 4-sphere around E is isomorphic to He, the 4-sphere

around F is isomorphic to Hf, and the 4-sphere around G is isomorphic to Hg.

See the appendix for further transitions.

94 Chapter 4. Message-Passing Automata

a

b c

de

f g

hi

1 2 3 4 5 6 7Ha:

Figure 4.11: Counterexample for the simpler transformation

4.4.5 MPAs vs. Graph Acceptors

In the last sections, we have implicitly shown that MPA and GA � ��� coincide.

Let us address graph acceptors over MSCs a little longer and carry over some

results concerning traces and product trace languages. As in most settings, we

cannot generally remove occurrence constraints from graph acceptors over MSCs.

But let us turn our attention to Lemma 2.4.13, which is adapted as follows:

Lemma 4.4.13 For any L ∈ L(MPA`), we have

L ∈ GA−� ��� iff L ∈ GA ����� .

Proof We start from the construction of the proof of Corollary 4.4.11, where,

for a finite MPA A = ((Ap)p∈P ,D, s
in , F), Ap = (Sp,∆p), an equivalent graph

acceptor B = (Q,R,S,Occ) over (Act , Pc) with R = 1 and L ����� (B) = L(A)

is built. However, if A is locally accepting, F is the cartesian product of sets

Fp ⊆ Sp. Thus, Occ reduces to

∧

p∈P


 ∨

s∈Fp,H∈FTp,s

“H ≥ 1”


 ,

which can be assumed to be true if we remove any sphere from S that, wrt. some

process p ∈ P , has a maximal sphere center that is not labeled with a state from

Fp and therefore does not belong to some FT p,s with s ∈ Fp. �

4.4. MPAs vs. EMSO-definable MSC Languages 95

Note that EP0 ⊆ L(MPAf
`) so that, in particular, the above result holds for weak

EMSO-definable product MSC languages. Altogether, we observe the following

correspondence: while the role of messages in an MPA corresponds to the role

of control states of graph acceptors, final states correspond to occurrence con-

straints. The class L(MPAf
`) is not only interesting because of the above property.

It is the basis for an algorithm by Genest et al. that, given a locally-cooperating

high-level MSC, yields a corresponding locally-accepting finite MPA [GMSZ02].

Furthermore, it turns out that, if we restrict to connected MSCs, L(MPAf
`) and

EMSO ��� � coincide.

Lemma 4.4.14 Let L be an MSC language. If, for any M ∈ L, M is connected,

then

L ∈ L(MPAf
`) iff L ∈ L(MPAf).

Proof Let A = ((Ap)p∈P ,D, sin , F), Ap = (Sp,∆p), be a finite MPA such that,

for any M ∈ L(A), cG(M) is connected. We are interested in a locally-accepting

finite MPA A′ = ((A′
p)p∈P ,D′, s′0, F

′), Ap = (S ′
p,∆

′
p), such that L(A′) = L(A).

Let us first describe the idea behind the construction of A′. Each process, when

executing its first transition, will basically guess both a global final state and a

connected communication graph. In addition, a component p of a global final

state might be −, which shall indicate that p is not expected to move at all.

In that case, p is not a node of the communication graph. Once a global final

state and a communication graph are guessed, they cannot be changed anymore.

Furthermore, they are passed to communication partners, which, in turn, are only

allowed to reply the request if they have made the same choice. Simultaneously,

a set of previous communication partners is locally updated and, at the end of a

run, compared with the communication graph at hand. Namely, in a local final

state of process p, the set of previous communication partners of p must coincide

with the set of p’s direct neighbors in the communication graph.

Let S−
A abbreviate

∏
p∈P (Sp] {−}) and let F− be the set of tuples s ∈ S−

A such

that there is f̄ ∈ F such that s coincides with f̄ in at least two components and,

for all other components p ∈ P , it holds both s[p] = − and f̄ [p] = sin [p]. Then,

A′ is given in detail as follows:

– for any p ∈ P , S ′
p =

(
Sp × F− × (

∏
p∈P 2P) × 2P

)
] {ιp}

(the first component of a p-local state—apart from ιp, the p-local initial

state—simulates A, while the second component holds a guessed global fi-

nal state, which, once chosen, cannot be changed anymore; the symbol −

shall hereby indicate that the respective process is not expected to move at

96 Chapter 4. Message-Passing Automata

all; the third and forth component specify further communication obliga-

tions and the set of former communication partners, respectively; hereby, a

communication graph (P (M),Arcs) (of some MSC M) will be represented

by its undirected variant, namely as a tuple ϑ̄ ∈
∏

p∈P 2P where, for any

p, q ∈ P , q ∈ ϑ̄[p] iff both {p, q} ⊆ P (M) and (p, q) ∈ Arcs or (q, p) ∈ Arcs),

– D′ = D × F− ×
∏

p∈P 2P

(again, the first component of a message aims at simulating the original

MPA, while the remaining components ensure that the guess about a global

final state and further communication obligations are respectively trans-

ferred to the communication partner),

– for θ ∈ {!, ?}, (ιp, pθq, (d, d̄, ϑ̄1), (s
′, s′, ϑ̄′, ϑ′)) ∈ ∆′

p if

• (sin [p], pθq, d, s′) ∈ ∆p

(of course, the initial local transition must correspond to some initial

local transition of A),

• ϑ̄′ represents a connected communication graph such that, for any

r ∈ P , s′[r] = − implies ϑ̄′[r] = ∅

(process p assumes both a global final state s′ and a communication

structure ϑ̄′ and propagates s′ along ϑ̄′ to ensure an agreement on s′),

• (d̄, ϑ̄1) = (s′, ϑ̄′),

• ϑ′ = {q}

(the set of communication partners of p is initialized to {q}),

• q ∈ ϑ̄[p] and, consequently, p ∈ ϑ̄[q]

(however, the transition can only be taken if this is intended by ϑ̄),

– for θ ∈ {!, ?}, ((s, s, ϑ̄, ϑ), pθq, (d, d̄, ϑ̄1), (s
′, s′, ϑ̄′, ϑ′)) ∈ ∆′

p if

• (s, pθq, d, s′) ∈ ∆p

(as above, a transition has to conform to the corresponding local tran-

sition relation of A),

• (s, ϑ̄) = (d̄, ϑ̄1) = (s′, ϑ̄′)

(as mentioned above, part of the local state cannot be changed any-

more; to guarantee an agreement on the global final state s′, that part

is passed/received to/from p’s communication partner q, respectively),

• ϑ′ = ϑ ∪ {q}

(q is added to the set of p’s communication partners so far),

4.4. MPAs vs. EMSO-definable MSC Languages 97

• q ∈ ϑ̄[p] and, consequently, p ∈ ϑ̄[q]

(q is only a valid communication partner of q if this is provided by the

communication structure that is represented by ϑ̄),

– s′0 = (ιp)p∈P

(at the very beginning, no process has made a guess about global final states

and the communication structure), and

– F ′ =
∏

p∈P F
′
p where, for any p ∈ P , F ′

p contains ιp and, furthermore, any

tuple (s, s, ϑ̄, ϑ) such that both s = s[p] and ϑ = ϑ̄[p]

(unless it did not make any move, process p—more precisely, its current

state—has to agree with the global final state and, according to ϑ̄, should

have communicated with all the processes it was supposed to do). �

As any MSC over three processes is connected, we get the following:

Corollary 4.4.15 If |P | ≤ 3, then L(MPAf
`) = L(MPAf).

Lemma 4.4.16

1-GA ����� \ GA−��� � 6= ∅

Proof Due to Lemma 4.4.13 and Corollary 4.4.15, we cannot expect to find

a corresponding language with only three processes. However, it is easy to see

that the language {G, I} with G and I taken from Figure 3.9 on page 52 is not

contained in GA−����� , though it can be recognized by some graph acceptor with

1-spheres and with occurrence constraints. The argument is similar to the one

for proving Lemma 2.2.12. �

Theorem 4.4.17 In general, MSO[≤] ����� (P,Λ) and EMSO ��� �
(P,Λ) are incompa-

rable wrt. inclusion.

Proof Let us provide an MSC language that is EMSO � ��� - but not MSO[≤] � ��� -

definable. This proof direction does not rely on message contents, which are

therefore omitted. So consider the MSC language L that contains the MSCs

M(m,n), m,n ∈ IN, of the form depicted in Figure 4.12 on the following page.

Note that, for any (E, {Cp}p∈P ,Cc, λ) ∈ L, C∗ is a total order. It is easy to find a

finite MPA recognizing L so that L is EMSO ����� -definable. Now suppose L to be

MSO[≤] ��� � -definable, too. Then, Lin(L) is MSO(Act ,−)[≤]Lin(
� ���

)-definable,

i.e., there is, according to Theorem 2.3.3, a word language L′ ∈ FA(Act) such

that L′ ∩ Lin(
�����

) = Lin(L). Consider

(1!3)m(1!4)(4?1)(4!1)(1?4)(1!3)n

(1!2)(2?1)(2!3)(3?2)

(3?1)m(3!4)(4?3)(4!3)(3?4)(3?1)n ∈ L′,

98 Chapter 4. Message-Passing Automata

which corresponds to the MSC from Figure 4.12 (cf. [Kus03]). If m and n are

sufficiently large, we can, due to pumping arguments for regular word languages,

find a word
(1!3)(m+k)(1!4)(4?1)(4!1)(1?4)(1!3)n

(1!2)(2?1)(2!3)(3?2)

(3?1)m(3!4)(4?3)(4!3)(3?4)(3?1)(n+k) ∈ L′

with k ≥ 1, which, though it is a valid linearization of some MSC, is not in accord

with Figure 4.12 and, therefore, contradicts our premise.

1 2 3 4

...m
{

...n
{

...
}
m

...
}
n

Figure 4.12: An MSC language that is not MSO[≤] ����� -definable

Conversely, set P to be {1, 2} and Λ to be {a, b, c}. Consider the picture language

L ⊆ � (Λ) from the proof of Theorem 2.5.3 and recall that any picture from L can

be (uniquely) partitioned into pictures G, C, and H such that the sets of different

column labelings of G and H coincide. The unique partition of the picture from

Figure 2.8 on page 35 is illustrated in Figure 2.9 on page 36. Such a picture can

be encoded as an MSC over (P,Λ) as follows: In the initialization phase, process 1

sends arbitrarily many messages to process 2. Thereupon, any message received is

acknowledged immediately until one of the processes stops acknowledging. Those

send events that take place during the initialization phase correspond to the first

column of the picture to be encoded and are accordingly labeled. Thus, the

initialization phase also constitutes the picture’s column length, say n in the

following. The second column is then given by the first n send events on the

second process line, the third column by the second n send events of process 1

and so on. Note that only a send event corresponds to some point in the picture

at hand. In this sense, Figure 2.8 gives rise to the MSC from Figure 4.13 on the

next page. We omit here a formal definition of such a folding, as, though slightly

4.4. MPAs vs. EMSO-definable MSC Languages 99

a

b

b

a

b

b

b

a

b

b

a

b

c

c

c

a

b

b
a

b

b

b

a

b

Figure 4.13: Folding a picture

modified, it is given in the following chapter. Now suppose the MSC language

L′, which consists of all foldings of pictures from L, to be the language of some

finite MPA. Then, due to Lemma 4.4.13 and Corollary 4.4.15 (both adapted to

extended MSCs), there is a graph acceptor B over (Act(P,Λ), Pc), say with set of

control states Q, such that L ��� � (P,Λ)(B) = L′. An accepting run of B, as argued

in the proof of Theorem 2.5.3, has to transfer all the information it has about the

upper part of the MSC (which corresponds to the first partition of the underlying

picture) along the middle part of size 2n to the lower section. However, as there

are 22n

− 1 possible distinct nonempty sets of words over {a, b} of length n but

only |Q|2n possible assignments of states to the middle part, we can, provided n

is sufficiently large, find an accepting run of B on some MSC whose upper and

lower part does not fit together in the sense stipulated by L.

It remains to show that L′ is MSO[≤] ��� � (P,Λ)-definable. First of all, the set of

all foldings of pictures from L is MSO[≤] ��� � (P,Λ)-definable. The corresponding

formula basically claims the existence of a chain that starts at the minimal event

and alternates between the processes 1 and 2. Moreover, both ≤1 and ≤2, which

are not to be confused with the orderings induced by the processes but correspond

to walking in the grid from top to bottom and from left to right, respectively,

are MSO[≤] ����� (P,Λ)-definable. For example, x ≤2 y, which stands for proceeding

100 Chapter 4. Message-Passing Automata

from left to right in the corresponding grid, asks for the existence of a chain

starting at x, iterating between 1 and 2, and ending in y. When defining ≤1,

the main difficulty is to determine a predicate that marks those events x that

correspond to the end of a column. Again, this can be reduced to the existence

of a chain starting at x and ending in the greatest event of the folding. Filling in

the proof details yields a defining formula for L′. �

Note that we will see in the following chapter (Corollary 5.2.5) that even the

classes MSO[≤] ��� � (P) and EMSO ��� �
(P) (thus, neglecting any message contents)

are incompatible wrt. inclusion.

4.4.6 MPAs vs. EMSO-definable Product Languages

One might expect that, implementing (weak) EMSO-definable product languages,

one can do with only one extra message. But appearances are deceiving:

Lemma 4.4.18 We have the following strict inclusions:

(a) L(1-MPAf
`) $ EP0

(b) L(1-MPAf) $ EP

Proof Inclusion of (a) follows from Lemma 4.2.1 and Lemma 4.4.3. Inclusion

of (b) then proceeds as the proof for Corollary 4.2.2. Let us turn towards strict-

ness. For naturals m,n ≥ 1, let the MSC M(m,n) be given by its projections

M(m,n) � 1 = (1!2)m ((1?2)(1!2))n and M(m,n) � 2 = ((2?1)(2!1))n (2?1)m. The

MSC M(3, 2) is depicted in Figure 4.14 on the facing page. Now consider the

EMSO-definable MSC language L = {M(n, n) | n ≥ 1}, which is recognized by

the locally-accepting finite 2-MPA from Figure 4.1 on page 63 with set of syn-

chronization messages {◦, •}. We easily verify that L is a weak product MSC

language. However, L is not contained in L(1-MPAf). Because suppose there is

an MPA A = ((Ap)p∈{1,2},D, s
in , F) ∈ 1-MPAf with L(A) = L. As A is finite,

there is a natural n ≥ 1 and an accepting run of A on M(n, n) such that com-

ponent A1, when reading the first n letters 1!2 of M(n, n) � 1, goes through a

cycle, say of length i (≥ 1), and component A2, when reading the last n letters

2?1 of M(n, n) � 2, goes through another cycle, say of length j (≥ 1). (We just

have to choose n large enough.) But then there is also an accepting run of A on

M(n + (i · j), n) 6∈ L, which contradicts the premise. �

Thus, a weak EMSO-definable product language is not necessarily implementable

as a finite MPA with one synchronization message. However, this is the case when

we restrict to finitely-generated or universally-bounded languages:

4.5. The Complete Hierarchy 101

1 2

Figure 4.14: M(3, 2)

Lemma 4.4.19 Let L be a finitely-generated or universally-bounded MSC lan-

guage.

(a) L ∈ EP0 iff L ∈ L(1-MPAf
`).

(b) L ∈ EP iff L ∈ L(1-MPAf).

Proof In first instance, we prove (a). It remains to show the direction from left

to right. Let L ∈ EP0 and assume L is finitely generated. By means of Theorems

4.1 and 2.3 and Proposition 3.2 from [Mor02], it follows that L ∈ L(1-MPAf
`).

Now assume L to be bounded. As L is already EMSO-definable, it is even regular

[HMKT00a]. The result then follows from Lemma 4.3.2. Proving (b) proceeds as

the proof of Corollary 4.2.2. �

4.5 The Complete Hierarchy

So far, we investigated the expressiveness of MPAs wrt. some language classes

proposed in Chapter 3. So let us summarize those results towards a hierarchy of

MSC languages.

Theorem 4.5.1 The classes of MSC languages proposed so far draw the picture

given by Figure 4.15.

Theorem 4.5.1 follows from results of the preceding sections as well as Lemma

4.5.2 and Lemma 4.5.4.

Lemma 4.5.2 For each N ≥ 1, L((N + 1)-∀MPAf
`) \ L(N -MPA) 6= ∅.

102 Chapter 4. Message-Passing Automata

L(MPA`)

L(MPAf
`)

L(∀MPAf
`)

RP
0 =

L(1-∀MPAf
`)

L(1-MPAf
`)

P0 =

L(1-MPA`)

RP =

L(1-∀MPAf)

L(1-MPAf)

P =

L(1-MPA)

EP
0

EP
R =

L(∀MPAf)

EMSO =

L(MPAf)

L(MPA)

L(2-MPAf
`)

L(3-MPAf
`)

L(2-MPAf)

L(3-MPAf)

L(2-∀MPAf
`)

L(3-∀MPAf
`)

L(2-∀MPAf)

L(3-∀MPAf)

L(2-MPA`)

L(3-MPA`)

L(2-MPA)

L(3-MPA)

Figure 4.15: A Hierarchy of MSC Languages

i

aj bk

Figure 4.16: Trace T (i, j, k) over Σ̃ bN

Proof We shift the proof into the setting of traces, i.e., we specify a language

from L((N + 1)-∀MPAf
`) that turns out to be contained in L(N -MPA) only if a

corresponding trace language is recognized by some product automaton. First of

all, however, we show that such a product automaton cannot exist.

Claim 4.5.3 Let N̂ ≥ 1, let A bN+1 = {a1, . . . , a bN+1} and B bN+1 = {b1, . . . , b bN+1}

be alphabets, and let the distributed alphabet Σ̃ bN be given by its components

Σ1 = A bN+1 ∪ {1, . . . , N̂} and Σ2 = B bN+1 ∪ {1, . . . , N̂}. For i ∈ {1, . . . , N̂}

and j, k ∈ {1, . . . , N̂ + 1}, set furthermore the trace T (i, j, k) over Σ̃ bN to be the

one illustrated in Figure 4.16 and the trace language T to be {T (i, j, j) | i ∈

{1, . . . , N̂} and j ∈ {1, . . . , N̂ + 1}}∗. There is no product automaton A over Σ̃ bN

such that L(A) = T (even if we allow infinite local state spaces).

Proof of Claim 4.5.3. We prove the claim by contradiction. So suppose there

is a product automaton A = ((Ak)k=1,2, s
in , F) over Σ̃ bN , Ak = (Sk,∆k), with

L(A) = T . For k = 1, 2, we define 2Sk-labeled trees tk = (Domk, valk) where

Domk, the set of nodes, is the least set satisfying the following:

4.5. The Complete Hierarchy 103

– ε ∈ Domk

– if w ∈ Domk and |w| is even, then {w1, . . . , wN̂} ⊆ Domk

– if w ∈ Domk and |w| is odd, then {w1, . . . , w(N̂ + 1)} ⊆ Domk

The valuation function val k is given by

– valk(ε) = {sin [k]}

– valk(wi) =





{s ∈ Sk | ∃s′ ∈ valk(w) : (s′, i, s) ∈ ∆k} if |wi| is odd

{s ∈ Sk | ∃s′ ∈ valk(w) : (s′, ai, s) ∈ ∆k} if |wi| is even

and k = 1

{s ∈ Sk | ∃s′ ∈ valk(w) : (s′, bi, s) ∈ ∆k} if |wi| is even

and k = 2

Let i ≥ 1 be a natural and let furthermore u = u(1)u(2) . . . u(2i) ∈ Dom1 and

v = v(1)v(2) . . . v(2i) ∈ Dom2 be nodes of t1 and t2, respectively, such that

val1(u) 6= ∅ and val 2(v) 6= ∅. While u stands for a set of computations of A1,

each ending in a state from val 1(u), v represents some computations of A2. As

A1 and A2 communicate on the set {1, . . . , N̂}, the pair (u, v) represents a set

of runs of A on T (u(1), u(2), v(2)) · . . . · T (u(2i − 1), u(2i), v(2i)) if, for each

j ∈ {1, . . . , i}, u(2j − 1) = v(2j − 1). (Of course, only those pairs (u, v) with

u(2j) = v(2j) for each j ∈ {1, . . . , i} can contain accepting ones.) Let d ∈ IN

such that (N̂ + 1)d > |F | (thus, d ≥ 1). We can identify at least (N̂2 + N̂)d

pairwise distinct nodes w of length |w| = 2d with (val 1(w) × val 2(w)) ∩ F 6= ∅.

This is because the runs (u, v) of A of length |u| = |v| = 2d accept (N̂2 + N̂)d

distinct traces (isomorphism classes of traces). More precisely, there is a set V of

nodes of t1 (which are also nodes of t2) such that |V | = (N̂2 + N̂)d and, for each

w ∈ V , |w| = 2d and (val1(w) × val 2(w)) ∩ F 6= ∅. Up to level 2d, there are N̂d

possible alternatives to choose successor nodes on an even level. Thus, there is a

subset V ′ of V such that

– |V ′| = (bN2+ bN)d

bNd
= (N̂ + 1)d (> |F |) and

– for any u = u(1)u(2) . . . u(2d) ∈ V ′, v = v(1)v(2) . . . v(2d) ∈ V ′, and

j ∈ {1, . . . , d}, u(2j − 1) = v(2j − 1).

For any two nodes u = u(1)u(2) . . . u(2d) ∈ V ′ and v = v(1)v(2) . . . v(2d) ∈

V ′ with u 6= v, (u, v) represents, according to the latter item, a set of runs

on T (u(1), u(2), v(2)) · . . . · T (u(2d − 1), u(2d), v(2d)) with u(2j) 6= v(2j) for at

least one j ∈ {1, . . . , d}, which must be all rejecting. Thus, we have (val 1(u) ×

104 Chapter 4. Message-Passing Automata

1 2 3 4

...
...i

{ }
i

Figure 4.17: MSC M(i)

val2(v)) ∩ F = ∅ for any u, v ∈ V ′ with u 6= v. But due to |V ′| > |F |, there are

at least two nodes u, v ∈ V ′ with u 6= v such that (val 1(u) × val2(v)) ∩ F 6= ∅,

which contradicts the premise. Thus, a product automaton A over Σ̃ bN satisfying

L(A) = T cannot exist. This concludes the proof of Claim 4.5.3. �

Let N ≥ 1 and set N̂ = N2. For i ∈ {1, . . . , N̂ + 1}, consider the MSC M(i) as

illustrated in Figure 4.17. We claim that the set L bN+1 = {M(i) | i ∈ {1, . . . , N̂ +

1}}∗ is contained in L((N+1)-∀MPAf
`)\L(N -MPA). Note first that L bN+1 is ∀(N̂+

1)-bounded. The ∀-bounded locally-accepting finite (N + 1)-MPA recognizing

L bN+1 simply sends from process 2 to process 3 a message with content n1 ∈

{1, . . . , N + 1} and then receives a message from process 3 with content n2 ∈

{1, . . . , N + 1}. The possible outcomes of (n1, n2) now encode the number of

messages to be sent both from 2 to 1 and from 3 to 4, respectively. As (N+1)2 ≥

N2 + 1, this is indeed possible using N + 1 messages. However, restricting to

N messages, such an encoding turns out to be no longer achievable. We now

show that L bN+1 in fact cannot be recognized by an N -MPA. Suppose there is

an N -MPA A = ((Ap)p∈{1,2,3,4},D, s
in , F), Ap = (Sp,∆p), with L(A) = L bN+1.

Without loss of generality, we assume that D = {1, . . . , N}. Let in the following

h : {1, . . . , N}2 → {1, . . . , N̂} be a bijective mapping and let, as in the proof

of Claim 4.5.3, A bN+1 = {a1, . . . , a bN+1} and B bN+1 = {b1, . . . , b bN+1} be alphabets

and the distributed alphabet Σ̃ bN be given by Σ1 = A bN+1 ∪ {1, . . . , N̂} and

Σ2 = B bN+1 ∪ {1, . . . , N̂}. We define =⇒1 ⊆ (S1 × S2) × Σ1 × (S1 × S2) and

=⇒2 ⊆ (S3 ×S4)×Σ2 × (S3 ×S4) to be the least sets, respectively, satisfying the

following:

– if (s2, (2!3, n1)(2?3, n2), s
′
2) ∈ ∆2 for some n1, n2 ∈ {1, . . . , N} and s2, s

′
2 ∈

S2 (we extend ∆2 in the obvious manner), then (s1, s2)
h(n1,n2)
=⇒1 (s1, s

′
2) for

each s1 ∈ S1

– if (s3, (3?2, n1)(3!2, n2), s
′
3) ∈ ∆3 for some n1, n2 ∈ {1, . . . , N} and s3, s

′
3 ∈

S3, then (s3, s4)
h(n1,n2)
=⇒2 (s′3, s4) for each s4 ∈ S4

4.5. The Complete Hierarchy 105

1!2 2?1 3?4 4!3

A1: A2: A3: A4:

Figure 4.18: Finite 1-MPA recognizing L

– if
(s2, (2!1, i1) . . . (2!1, ik)(2?1, ik+1), s

′
2) ∈ ∆2 and

(s1, (1?2, i1) . . . (1?2, ik)(1!2, ik+1), s
′
1) ∈ ∆1

for some k ∈ {1, . . . , N̂ + 1}, i1, . . . , ik, ik+1 ∈ {1, . . . , N}, s2, s
′
2 ∈ S2, and

s1, s
′
1 ∈ S1, then (s1, s2)

ak=⇒1 (s′1, s
′
2)

– if
(s3, (3!4, i1) . . . (3!4, ik)(3?4, ik+1), s

′
3) ∈ ∆3 and

(s4, (4?3, i1) . . . (4?3, ik)(4!3, ik+1), s
′
4) ∈ ∆4

for some k ∈ {1, . . . , N̂ + 1}, i1, . . . , ik, ik+1 ∈ {1, . . . , N}, s3, s
′
3 ∈ S3, and

s4, s
′
4 ∈ S4, then (s3, s4)

bk=⇒2 (s′3, s
′
4)

Employing the transition relations =⇒1 and =⇒2, we construct a product au-

tomaton A′ = ((A′
i)i=1,2, s

in ′
, F ′) over Σ̃ bN , A′

i = (S ′
i,=⇒i) (with possibly infinite

S ′
i), where

– S ′
1 = S1 × S2 and S ′

2 = S3 × S4,

– sin
′
= ((sin [1], sin [2]), (sin [3], sin [4])), and

– F ′ = {((s1, s2), (s3, s4)) | (s1, s2, s3, s4) ∈ F}.

We easily verify that L(A) = L bN+1 implies L(A′) = T . But, as Claim 4.5.3

states, such a product automaton A′ does not exist, resulting in a contradiction.

�

Lemma 4.5.4 L(1-∀MPAf) \ L(MPA`) 6= ∅

Proof Let L consist of the MSCs G and I given by Figure 3.9 on page 52. Then,

L is contained in L(1-∀MPAf)\L(MPA`). As processes 1 and 2 do not receive any

message from 3 and 4 and vice versa, any locally-accepting MPA accepting both

106 Chapter 4. Message-Passing Automata

G and I will accept G · I. In contrast, the ∀-bounded finite 1-MPA from Figure

4.18 recognizing L has some global knowledge employing global final states. �

We did not pay special attention to the relation between (weak) EMSO-definable

product languages and the classes of languages defined by (locally-accepting) fi-

nite N -MPAs forN ≥ 2, which is indicated by the light-gray line in Figure 4.15 on

page 102. However, we assume that it is possible to show incomparability respec-

tively witnessed by a language depending on N and similar, even though more

complicated, to the one suggested in the proof of Lemma 4.4.18.

Chapter 5

Beyond Implementability

In this chapter, we turn our attention to the relation between MSO logic over

MSCs and its existential fragment (and therefore, implicitly, finite MPAs, which

refer to the notion of implementability). We also compare those logics to the

classes of rational and recognizable MSC languages. We show that MSO logic is

strictly more expressive than EMSO. Together with the results of the previous

chapter, this will be used to prove that finite MPAs cannot be complemented in

general, solving an open problem raised by Kuske [Kus01, Kus03], and that they

cannot be determinized. Those results rely on an encoding of grids into MSCs,

which allows to apply results from the framework of grids and graphs in general

to MSCs. Altogether, we highlight the application limitations of MPAs so that

future work might aim at finding large classes of (finite) MPAs that still have

promising algorithmic properties.

5.1 EMSO vs. MSO in the Bounded Setting

Let us first recall the corresponding problem in the bounded setting where we

restrict the interpretation of formulas to ∀B-bounded MSCs.

Theorem 5.1.1 For any B ≥ 1,

EMSO �����
∀B

= MSO � ���
∀B

= EMSO[≤] ��� �
∀B

= MSO[≤] ��� �
∀B
.

Proof First note that the language of a finite MPA restricted to the set of ∀B-

bounded MSCs is regular. More precisely, for any finite MPA A and any B ≥ 1,

L(A) ∩
�����

∀B is a regular MSC language. With Theorem 4.4.1 and results

from [HMKT00b] and [Kus03], this implies EMSO ��� �
∀B

= EMSO[≤] ��� �
∀B

=

MSO[≤] ��� �
∀B

.

108 Chapter 5. Beyond Implementability

It remains to show that EMSO � ���
∀B

⊇ MSO ��� �
∀B

. More generally, we show

that, for each ϕ(Y1, . . . , Yi) ∈ MSO, i ≥ 1, there is a ∀-bounded finite MPA

A (adapted to structures from
����� {0,1}i

) such that L(A) = L � ���
∀B

(ϕ). So let

ϕ(Y1, . . . , Yi) ∈ MSO, which, according to Lemma 2.2.4, can be assumed to be of

the form

∃Xk∀Xk−1 . . .∃/∀X1ψ(Y1, . . . , Yi, Xk, . . . , X1)

or, equivalently,

∃Xk¬∃Xk−1 . . .¬∃X1ψ
′(Y1, . . . , Yi, Xk, . . . , X1)

for some k ≥ 1. We proceed by induction on k. For k = 1, ϕ is an EMSO-

formula, which has an equivalent MPAf -counterpart A (tailored to extended

MSCs), i.e., L(A) = L ��� � (ϕ). Using =⇒A, we gain some finite automaton over

Act×{0, 1}i recognizing Lin(L(A) ∩ (
�����

∀B){0,1}i

), which is a witness for the fact

that L(A) ∩ (
�����

∀B){0,1}i

is a regular MSC language. According to [MKS00],

there is A′ ∈ det-∀MPAf with L(A′) = L(A) ∩ (
�����

∀B){0,1}i

. (Though we did

not explicitly define what determinism means for extended MPAs, it is obvious

how to adjust the definition accordingly so that, then, the abovementioned result

by Mukund et al. also holds in the extended setting.) Induction now alternately

involves complementation and projection steps. A complementation step first

requires to construct from A′ the finite MPA A′ with L(A′) =
����� {0,1}i

\ L(A′),

which, though taking into account that we deal with extended MSCs, can be

found along the usual lines, i.e., first providing a complete deterministic MPA,

whose set of global final states is then complemented. Projection is even eas-

ier, as each communication action just needs to be projected onto the remaining

components. �

Thus, our work extends the results by Henriksen et al. [HMKT00b] and Kuske

[Kus03], which will be slightly generalized in the following. Moreover, as sets

of ∀B-bounded MSCs can be seen as sets of Mazurkiewicz traces [Kus03] and,

in the setting of Mazurkiewicz traces, MSO logic is expressively equivalent to

asynchronous automata (cf. Theorem 2.4.10), Theorem 4.4.1 can be understood

as an extension of Zielonka’s Theorem.

Proposition 5.1.2 ([Kus03]) For any B ≥ 1, the following hold:

(a)
�����

∀B ∈ EMSO ��� �

(b)
�����

∀B ∈ EMSO[≤] ��� �

By Proposition 5.1.2, Theorem 5.1.1 can be sharpened as follows:

5.2. EMSO vs. MSO in the Unbounded Setting 109

Theorem 5.1.3 For any ∀-bounded MSC language L, the following statements

are equivalent:

1. L ∈ EMSO ��� �

2. L ∈ MSO � ���

3. L ∈ EMSO[≤] � ���

4. L ∈ MSO[≤] �����

5. L ∈ MPA

Recently, it was even shown that, if we restrict to ∃-bounded MSC languages,

any MSO ��� � -definable set is implementable.

Theorem 5.1.4 ([Gen04, GKM04]) Theorem 5.1.3 holds for ∃-bounded MSC

languages verbatim.

The proof by Genest et al. makes use of ideas from [Kus03]: existentially-bounded

MSC languages are also seen as trace languages, which allows to apply certain

asynchronous mappings [DR95].

5.2 EMSO vs. MSO in the Unbounded Setting

In this section, we show that, in contrast to the bounded case (no matter if

globally or existentially, as we have seen), quantifier alternation forms a hierarchy,

i.e., MSO over MSCs is strictly more expressive than the most expressive model

of a finite MPA.

Matz and Thomas proved infinity of the monadic quantifier-alternation hierarchy

over grids [MT97, Tho97a] (cf. Theorem 2.5.4). We show how grids can be en-

coded into MSCs and then rewrite their result in terms of MSCs adapting their

proof to our setting.

Theorem 5.2.1 The monadic quantifier-alternation hierarchy over
�����

is infi-

nite.

Proof A grid G(n,m) can be folded to an MSC M(n,m) as exemplarily shown

for G(3, 5) in Figure 5.1 on the following page. A similar encoding was used in

[Tho96] to transfer results on grids to the setting of acyclic graphs with bounded

antichains. By the type of an event, we recognize which events really correspond

110 Chapter 5. Beyond Implementability

to a node of the grid, namely those that are labeled with a send action performed

by process 1 or 2. Formally, M(n,m) is given by its projections as follows:

M(n,m)�1 =

{
(1!2)n [(1?2)(1!2)]n((m−1)/2) if m is odd

(1!2)n [(1?2)(1!2)]n((m/2)−1) (1?2)n if m is even

M(n,m)�2 =

{
[(2?1)(2!1)]n((m−1)/2) (2?1)n if m is odd

[(2?1)(2!1)]n(m/2) if m is even

A grid language G defines the MSC language L(G) := {M(n,m) | G(n,m) ∈ G}.

For a function f : IN≥1 → IN≥1, we furthermore write L(f) as a shorthand for the

MSC language L(G(f)). We now closely follow [Tho97a], which resumes the result

of [MT97]. So let, for k ∈ IN, the functions sk, fk : IN≥1 → IN≥1 be inductively

defined via s0(n) = n, sk+1(n) = 2sk(n), f0(n) = n, and fk+1(n) = fk(n) · 2fk(n).

1!2

1!2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2?1

2?1

(1, 1)

(2, 1)

(3, 1)

(1, 3)

(2, 3)

(3, 3)

(1, 5)

(2, 5)

(3, 5)

(1, 2)

(2, 2)

(3, 2)

(1, 4)

(2, 4)

(3, 4)

Figure 5.1: Folding the (3, 5)-grid

Claim 5.2.2 For each k ∈ IN, the MSC language L(fk) is (Σ2k+3) ��� � -definable.

Proof of Claim 5.2.2. We will show that, for any k ≥ 1, if a grid language

G is (Σk) � � -definable (over grids), then L(G) is (Σk) ����� -definable (over MSCs).

5.2. EMSO vs. MSO in the Unbounded Setting 111

The claim then follows from the fact that any grid language G(fk) is (Σ2k+3) � � -

definable [Tho97a]. So let k ∈ IN≥1. Figure 5.3 on page 113 shows the MPA AGF ,

which recognizes the set of all possible grid foldings. For clarity, ε-transitions

are employed, which can be easily eliminated without affecting the recognized

language. As usual, a global final state is depicted by a dashed line. Moreover,

its labeling indicates, which grid foldings it accepts, while n and m range over

IN≥1 and IN, respectively. Alternatively, a corresponding EMSO-sentence requires

the existence of a chain iterating between processes 1 and 2. So let, according

to Lemma 4.4.3, ϕGF = ∃XψGF(X) be an EMSO-sentence (over MSCs) with

first-order kernel ψGF(X) that defines the language of AGF . Moreover, let ϕ =

∃Y1∀Y2 . . .∃/∀Ykϕ
′(Y1, . . . , Yk) be a Σk-sentence (over grids) where ϕ′(Y1, . . . , Yk)

contains no set quantifiers. Without loss of generality, ϕGF and ϕ employ dis-

tinct sets of variables, which, moreover, are supposed to be different from some

variable Z. We now determine the Σk-sentence Ψϕ over MSCs with L ��� � (Ψϕ) =

L(L � � (ϕ)), i.e., the foldings of L � � (ϕ) form exactly the MSC language defined

by Ψϕ. Namely, Ψϕ is given by

∃Z∃X∃Y1∀Y2 . . .∃/∀Yk(ψbottom(Z) ∧ ψGF(X) ∧ ‖ϕ′(Y1, . . . , Yk)‖Z).

Hereby, the first-order formula ψbottom(Z) with free variable Z makes sure that

Z is reserved to those send events that correspond to the end of a column (for

simplicity, Z may contain some receive events, too), which are highlighted in

Figure 5.2 on the following page forM(3, 5). This can be easily formalized starting

with the requirement that Z contains the maximal send event on the first process

line that is not preceded by some receive event. Furthermore, ‖ϕ′(Y1, . . . , Yk)‖Z

is inductively derived from ϕ′(Y1, . . . , Yk) as follows:

– ‖x = y‖Z = (x = y)

– ‖S1(x, y)‖Z =

¬(x ∈ Z)

∧
∨

σ∈{1!2,2!1}(λ(x) = σ ∧ λ(y) = σ)

∧ x C1 y

∨ ∃z(λ(z) = 1?2 ∧ x C1 z ∧ z C1 y)

∨ ∃z(λ(z) = 2?1 ∧ x C2 z ∧ z C2 y)

– ‖S2(x, y)‖Z =

λ(x) = 1!2 ∧ λ(y) = 2!1 ∧ ∃z(x Cc z ∧ z C2 y)

∨ λ(x) = 2!1 ∧ λ(y) = 1!2 ∧ ∃z(x Cc z ∧ z C1 y)

– ‖x ∈ X‖Z = x ∈ X

112 Chapter 5. Beyond Implementability

1!2

1!2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2?1

2?1

(1, 1)

(2, 1)

(3, 1)

(1, 3)

(2, 3)

(3, 3)

(1, 5)

(2, 5)

(3, 5)

(1, 2)

(2, 2)

(3, 2)

(1, 4)

(2, 4)

(3, 4)

Figure 5.2: Events of a grid folding that correspond to the end of a column

– ‖¬ϕ‖Z = ¬‖ϕ‖Z

– ‖ϕ ∨ ψ‖Z = ‖ϕ‖Z ∨ ‖ψ‖Z

– ‖ϕ ∧ ψ‖Z = ‖ϕ‖Z ∧ ‖ψ‖Z

– ‖ϕ→ ψ‖Z = ‖ϕ‖Z → ‖ψ‖Z

– ‖ϕ↔ ψ‖Z = ‖ϕ‖Z ↔ ‖ψ‖Z

– ‖∃xϕ‖Z = ∃x((
∨

σ∈{1!2,2!1} λ(x) = σ) ∧ ‖ϕ‖Z)

– ‖∀xϕ‖Z = ∀x((
∨

σ∈{1!2,2!1} λ(x) = σ) → ‖ϕ‖Z)

Similarly to the proof of Lemma 4.4.3, the above inductive derivation makes sure

that only elements that correspond to grid nodes are assigned to Y1, . . . , Yk. �

Claim 5.2.3 Let f : IN≥1 → IN≥1 be a function. If L(f) is (Σk) ��� � -definable for

some k ≥ 1, then f(n) is in sk(O(n)).

5.2. EMSO vs. MSO in the Unbounded Setting 113

1!2,#

1!2,⊥

ε

1?2, ◦

1?3

ε
1?2, ◦

1!2, ◦
1?2,⊥

1!2,⊥

ε

1?2, •

1?2,⊥

ε
1?2, •

1!2, •
1?2,⊥

1!2,⊥

ε

ε

2?1,#

2?1,⊥

2?1,⊥

2!1,⊥

ε

2?1, ◦

2?1,⊥

ε

2?1, •

2?1,⊥

ε

2?1,#

2!1, ◦

2?1,⊥

2!1,⊥

ε

2?1, ◦

2!1, •

2?1,⊥

ε

2?1, •

2!1, ◦

ε

(n, 1)

(n, 4m+ 2)

(n, 4m+ 3)

(n, 4m+ 4)

(n, 4m+ 5)

Figure 5.3: A message-passing automaton recognizing GF

114 Chapter 5. Beyond Implementability

Proof of Claim 5.2.3. Let k ≥ 1 and let in the following the events of an MSC

(E, {Cp}p∈P ,Cc, λ) be labeled with elements from Act×{0, 1}i for some i ∈ IN≥1,

i.e., λ : E → Act × {0, 1}i. But note that the type of an event still depends on

the type of its communication action only. Let furthermore ϕ(Y1, . . . , Yi) be a Σk-

formula defining a set of MSCs over the new label alphabet that are foldings of

grids. For a fixed column length n ≥ 1, we will build a finite (word) automaton

An over (Act × {0, 1}i)n with sk−1(c
n) states (for some constant c) that reads

grid-folding MSCs column by column and is equivalent to ϕ(Y1, . . . , Yi) wrt. grid

foldings with column length n. Column here means a sequence of communication

actions, each provided with an additional label, that represents a column in the

corresponding grid. For example, running on the MSC M(3, 5) as shown in

Figure 5.1 on page 110, A3 first reads the letter (1!2)3 (recall that each action is

still provided with an extra labeling, which we omit here for the sake of clarity),

then continues reading ((2?1)(2!1))3 and so on. Then, the shortest word accepted

by An has length ≤ sk−1(c
n) so that, if ϕ(Y1, . . . , Yi) defines an MSC language

L(f) for some f , we have f(n) ∈ sk(O(n)). Let us now turn to the construction

of An. The formula ϕ(Y1, . . . , Yi) is of the form

∃Xk∀Xk−1 . . .∃/∀X1ψ(Y1, . . . , Yi, Xk, . . . , X1)

or, equivalently,

∃Xk¬∃Xk−1 . . .¬∃X1ψ
′(Y1, . . . , Yi, Xk, . . . , X1).

We proceed by induction on k. For k = 1, ϕ(Y1, . . . , Yi) is an EMSO-formula.

According to Theorem 2.2.13, its MSC language (consisting of MSCs with ex-

tended labelings) coincides with the MSC language of some graph acceptor. The

transformation from graph acceptors to MPAs from the proof of Theorem 4.4.1

can be easily adapted to handle the extended labeling. Thus, ϕ(Y1, . . . , Yi) defines

a language that is recognized by some finite MPA A = ((Ap)p∈P ,D, s
in , F). The

automaton An can now be obtained from A using a part of its global transition

relation =⇒A ⊆ ConfA × (Act × {0, 1}i) × D × ConfA. Note that we have to

consider only a bounded number of channel contents, as the set of grid foldings

with column length n forms a ∀n-bounded MSC language. For some constant c,

we have (|SA| · (|D|+ 1))|Ch|·n ≤ cn. Thus, cn = s0(c
n) is an upper bound for the

number of states of An, which only depends on the automaton A and, thus, on

ϕ(Y1, . . . , Yi). The induction steps respectively involve both a complementation

step (for negation) and a projection step (concerning existential quantification).

While the former increases the number of states exponentially, the latter leaves

it constant so that, altogether, the required number of states is obtained. This

concludes the proof of Claim 5.2.3. �

5.3. Determinism vs. Nondeterminism 115

As fk+1(n) is not in sk(O(n)), it follows from Claims 5.2.2 and 5.2.3 that the

hierarchy of classes of (Σk) ����� -definable MSC languages is infinite. �

Corollary 5.2.4

MPA = EMSO ��� � $ MSO ��� �

As, for any f : IN≥1 → IN≥1 and (E, {Cp}p∈P ,Cc, λ) ∈ L(f), C = l, which is

first-order definable in terms of ≤, we obtain the following (cf. Theorem 4.4.17):

Corollary 5.2.5 MSO[≤] ����� and EMSO ��� � are incomparable wrt. inclusion.

As MPA = EMSO � ��� , it follows that the complement
�����

\ L of an MSC

language L ∈ MPA, is not necessarily contained in MPA, too. Thus, we get the

answer to an open question, which has been raised by Kuske [Kus01, Kus03].

Theorem 5.2.6 MPA is not closed under complementation.

5.3 Determinism vs. Nondeterminism

Real-life distributed systems are usually deterministic. Besides the absence of

deadlocks, determinism is therefore one of the crucial properties an implementa-

tion of a distributed protocol should have. Previous results immediately affect

the question of whether deterministic MPAs suffice to achieve the full expres-

sive power of general MPAs. It is well-known that, in the framework of words

and traces, any finite automaton and, respectively, any asynchronous automa-

ton admits an equivalent deterministic counterpart. However, things are more

complicated regarding MSCs. Let us first have a look at the bounded setting.

Theorem 5.3.1 ([MKS00, Kus03])

L(det-∀MPAf) = L(∀MPAf)

The algorithm by Mukund et al. to construct from a nondeterministic MPA a

deterministic counterpart is based on a technique called time stamping, while

Kuske’s construction relies on asynchronous mappings for traces.

Unfortunately, the preceding result cannot be transferred to the unbounded set-

ting.

Theorem 5.3.2

L(det-MPAf) $ L(MPAf)

116 Chapter 5. Beyond Implementability

Proof According to the algorithm from page 63, we can assume a deterministic

finite MPA A = ((Ap)p∈P ,D, s
in , F) to be complete in the sense that, for any MSC

M , it allows exactly one run on M . If we set A to be the deterministic finite MPA

((Ap)p∈P ,D, s
in , SA \ F), it holds L(A) =

�����
\ L(A). Thus, L(det-MPAf) is

closed under complementation. However, as Theorem 5.2.6 states, L(MPAf) is

not closed under complementation, which implies the theorem. �

Theorems 5.2.6 and 5.3.2 show that both EMSO logic and finite MPAs in their

unrestricted form are unlikely to have some nice algorithmic properties that would

attract practical interest.

5.4 MPAs vs. Recognizability

In the field of MSCs, recognizability, which was first studied by Morin in [Mor02],

turned out to be closely related to implementability.

Proposition 5.4.1 ([Mor02]) For any finitely-generated MSC language L, we

have L ∈ REC ����� iff L ∈ MSO[≤] ��� � .

Recall that, due to [Gen04, GKM04], every finitely-generated MSC language that

is also MSO[≤] ����� -definable admits an implementation in terms of a finite MPA.

q0

q1 q2

��� �

{1 ����� }

{1 ����� }

L ��� � \ (L ∪ {1 ����� })

��� � \ {1 ����� }

Figure 5.4: An
�����

-automaton

Let us now focus on implementability and investigate the expressive power of

finite MPAs relative to the class of recognizable MSC languages. In fact, any

finite implementation describes a recognizable MSC language, while, however,

there are more recognizable languages than implementable ones.

Theorem 5.4.2

MPA $ REC ��� �

5.5. MPAs vs. Rational MSC Languages 117

Proof It is easy to provide a recognizable language that is not implementable. In

fact, any set L of prime MSCs is recognizable by the
�����

-automaton depicted in

Figure 5.4 on the facing page. Conversely, suppose A = ((Ap)p∈P ,D, s
in , F) to be

a finite MPA. For a global state s ∈ SA of A and an MSC M , we denote by δ̂(s,M)

the set of global states s′ ∈ SA such that, in the canonical manner, A admits some

run on M that starts in s and ends in s′. Then, (2SA , δ, {sin}, {S ⊆ SA | S ∩

F 6= ∅}), where, for any S ⊆ SA and any MSC M , δ(S,M) =
⋃

s∈S δ̂(s,M), is an
�����

-automaton whose language is L(A). �

Concluding, one might argue that, actually, recognizability makes sense for finitely-

generated MSC languages, where it reduces to implementability, only. This view

is supported by Proposition 2.1.3, according to which
�����

is not rational. How-

ever, the latter property is shared with the class R � ��� of regular MSC languages,

which does not contain
�����

either.

5.5 MPAs vs. Rational MSC Languages

A major goal regarding high-level constructs has been to identify specifications

that allow implementations in terms of MPAs, preferably automatically and ef-

ficiently. This is difficult in general, as an implementation is controlled locally

rather than globally, while high-level descriptions such as HcMSCs allow to de-

clare global states that control multiple processes at the same time. Moreover,

it has been studied how to regain from an implementation a specification and

whether a formalism is complete in the sense that any implementable language

can be specified at all. Those efforts are important with regard to the analysis of a

system, as they help to gain new insights in how an implementation is structured.

The former question of deriving an implementation from a given specification is

raised in [GMSZ02, HK02], for example, while the inverse problem was tackled

in [MP01, GMP01]. However, we first show, that completeness is not achievable

if we consider classes of HcMSCs.

Proposition 5.5.1 There is an implementable MSC language that cannot be

described by some HcMSC.

Proof An implementable MSC language that is not the MSC language of some

HcMSC is depicted in Figure 5.5 on the next page where the Ai, Bi, Ci are sup-

posed to be naturals indicating how often a corresponding message is sent. Let us

denote this language by L and suppose there is an HcMSC H whose basic MSC

language is L. As A1 and A2 can be arbitrarily large, there must occur respective

iterations in H, which allow for sending arbitrarily many messages from 2 to 4.

118 Chapter 5. Beyond Implementability

1 2 3 4 5 6 7

A1

{
...

...
}
C1

A2

{
...

B1

{
...

...
}
C2

B2

{
...

M :

Figure 5.5: An MSC language that is implementable but not the MSC language

of some HcMSC

Now suppose that this is only done by partial MSCs that consist of one single

send event. Consequently, there must be an iteration of respective single receive

events. Due to pumping arguments, those unmatched singletons can be combined

towards an MSC where messages sent in the A1-phase are only received in the

A2-phase, which is not desired. So, when building an MSC, H must employ at

least one partial MSC MA that contains a complete message transfer from 2 to

4. By the same argument, there have to appear prime MSCs MB and MC in H

that represent a complete message from 2 to 6 (in the B1- or B2-phase) and a

message from 6 to 4 (in the C1- or C2-phase), respectively. But, obviously, the

three MSCs MA, MB, and MC we identified cannot contribute to an MSC as

depicted in Figure 5.5, which is a contradiction. �

Generalizing a result by Genest et al., who showed that any safe gc-HcMSC can

be defined in terms of MSO ��� � [Gen04], we show that any gc-HcMSC describes

an MSO ��� � -definable MSC language.

5.5. MPAs vs. Rational MSC Languages 119

?

MSO
EMSO = MPA

gc-HcMSC

safe-gc-HcMSC

Figure 5.6: An overview

Theorem 5.5.2

gc-HcMSC ⊆ MSO �����

Proof Let H be a gc-HcMSC. Without loss of generality, we can assume that

any nonempty partial MSC that occurs in H is prime and that there is at least

one prime partial MSC in H. Now set Γ = {a1, . . . , am} to be the (finite) set

of those prime partial MSCs, which gives rise to the trace monoid
���

(Σ̃Γ). Let

α be a copy of H, which will then be seen as a rational expression of
���

(Σ̃Γ).

According to Section 2.4, we can assume the existence of an MSO(Γ,−)-sentence

ϕ that defines L(α) relative to
���

(Σ̃Γ), i.e., L(α) = L ��� (Σ̃Γ)(ϕ). We now construct

a formula Φ ∈ MSO(Act , Pc) such that L(H) = L ��� � (Φ) as follows:

We extend Γ towards Γ′ = {a1, . . . , am, a
′
1, . . . , a

′
m}, which contains for each mem-

ber ai of Γ a distinct copy a′i. Moreover, we define a new distributed alphabet Σ̃′
Γ

to be (Σ′
p)p∈P where, for any p ∈ P , Σ′

p = {a ∈ Γ′ | p ∈ P (a)}. It is not hard to

see that the trace language that we obtain from L(α) if we replace in any trace

every second ai with its copy a′i is MSO(Γ′,−) ��� (Σ̃′
Γ)-definable, say by a sentence

α′. In particular, for any trace (E,C, λ) ∈ L(α′) and e, e′ ∈ E, e C e′ implies

λ(e) 6= λ(e′). Though a′i is a distinct copy of ai, it will stand for the same prime

partial MSC as ai. This will prove useful when we now transform α′ into the

formula Φ ∈ MSO(Act , Pc) that defines L(H) relative to
�����

. It is basically of

the form

Φ = ∃Xa1 . . .∃Xam
∃Xa′

1
. . . ∃Xa′

m

(
partition ∧

∧

a∈Γ′

Ψa ∧ Ψ≺ ∧ ||α′||

)

Roughly speaking, the formula partition (whose free variables are omitted here)

guarantees that the basic MSC at hand is partitioned into sets represented by

Xa1 , . . . , Xam
, Xa′

1
, . . . , Xa′

m
. Intuitively, Xai

andXa′
i
decompose into all the prime

partial MSCs that are single events in the trace representation of the MSC at

120 Chapter 5. Beyond Implementability

hand. Thus, a formula Ψa ensures that, in turn, the set Xa can be partitioned

into sets of events that each correspond to some event of a trace, which is a prime

partial MSC. This can be done by a first-order formula. For example, taking

a ∈ Γ′ to be the prime partial MSC G from Figure 3.9 on page 52 (recall that

ai and a′i still both have to represent the same prime partial MSC), Ψa has to

formalize that, for any x, x ∈ Xa implies

– x is either labeled with 1!2 or with 2?1 and

– if x is labeled with 1!2, then there is an event y ∈ Xa with x Cc y such that

any z 6∈ {x, y} that is related to either x or y wrt. C is not contained in Xa

and

– if x is labeled with 2?1, then there is an event y ∈ Xa with y Cc x such

that any z 6∈ {x, y} that is related to either x or y wrt. C is not contained

in Xa.

Decomposing each set Xa into disjoint sets of events yields a refined partitioning

of the MSC at hand, say into sets X1, . . . , XK. Of course, K can be arbitrarily

large. However, one can capture an element from X = {X1, . . . , XK} by means

of an MSO(Act , Pc)-formula ψ(X). Let us define an order ≺ on X according

to Xi ≺ Xj if there are x ∈ Xi and y ∈ Xj both located on some process p

such that x Cp y. Now, Ψ≺ has to ensure that the reflexive transitive closure

of ≺ is a well-defined partial order, which can be formalized by means of the

(MSO-definable) transitive closure of the predicate ||x C y|| as specified below.

Intuitively, this excludes an overlapping of prime partial MSCs. Moreover, ||α′||

is inductively derived from α′ where

– ||λ(x) = a|| = x ∈ Xa,

– ||x ∈ X|| = x ∈ X,

– ||x C y|| formalizes that x and y respectively belong to some distinct sets

Xi, Xj ∈ X with Xi ⊆ Xa and Xj ⊆ Xb for some a and b such that both

Xi ≺ Xj and there is no set Xk ∈ X with Xi ≺ Xk ≺+ Xj. In particular,

there must be a path from x to y via elements from C ∪ C−1 whose prefix

consists of elements from Xa and which then only consists of elements from

Xb where the transition from Xa to Xb must come from some Cp (which

can be done by a first-order formula, as the length of a shortest path is

restricted by a constant that only depends on Γ), and

5.5. MPAs vs. Rational MSC Languages 121

– ||x = y|| is defined similarly to ||x C y|| and formalizes that x and y belong

to the same set Xa so that there is a path from x to y via elements from

C ∪ C−1 that consists of elements from Xa only.

The other operators are derived canonically. �

It remains to identify a large subset of implementable gc-HcMSCs including

some of those generating an (even existentially) unbounded behavior. In [Gen04,

GKM04], it is already shown that any safe gc-HcMSC gives rise to an imple-

mentable MSC language, supplementing Theorem 5.1.3.

Theorem 5.5.3 ([Gen04, GKM04]) For any ∃-bounded MSC language L, L ∈

gc-HcMSC implies L ∈ MSO ��� � .

Actually, [Gen04, GKM04] even shows that an ∃-bounded MSC language is

MSO ��� � -definable iff it is the MSC language of some safe HcMSC in which iter-

ation occurs only over partial MSCs with connected communication graph.

Some results of this and the previous chapter are summarized in Figure 5.6 on

page 119.

Chapter 6

Conclusion and Future Work

In this thesis, it is shown that MPAs are expressively equivalent to EMSO logic

over MSCs. In particular, any EMSO sentence admits some implementation in

terms of a finite MPA. Our proof is based on results by Thomas, which, in turn,

refer to Hanf’s Theorem. Moreover, we proved the class of MSO-definable MSC

languages to be strictly larger than the class of implementable ones, concluding

that MPAs cannot be complemented in general. This question was raised in

[Kus01, Kus03]. Recall that we can also infer that the deterministic model of a

finite MPA is strictly weaker than the nondeterministic one. In this regard, our

main results read as follows:

Theorem 4.4.1 MPA = EMSO ��� �

Theorem 5.2.1 The monadic quantifier-alternation hierarchy over
�����

is infi-

nite.

Theorem 5.2.6 MPA is not closed under complementation.

Theorem 5.3.2 L(det-MPAf) $ L(MPAf)

We then showed that the specification formalism of HcMSCs is not complete in the

sense that any implementable behavior can be specified. Conversely, however, the

language of some gc-HcMSC turned out to be MSO-definable. This might be the

starting point to finding large subsets of gc-HcMSC that contain implementable

MSC languages. In particular, it remains unanswered whether any gc-HcMSC is

implementable.

Recall that, if we restrict to universally-bounded MSC languages, EMSO, MSO,

EMSO[≤], and MSO[≤] coincide wrt. expressiveness. Thus, our work extends

124 Chapter 6. Conclusion and Future Work

the work by Henriksen et al. [HMKT00b]. As a ∀-bounded MSC language can

be seen as a Mazurkiewicz-trace language [Kus03] and, in the setting of traces,

MSO logic is expressively equivalent to asynchronous automata, Theorem 4.4.1

might be understood as an extension of Zielonka’s Theorem.

Let us once again discuss the role that the modeling of an MSC plays in this

context. We consider an MSC to be a graph, which corresponds to the view

taken in [LL95, Mad01] but is different from the one in [HMKT00b, Kus03], who

model an MSC as a labeled partial order (E,≤, λ). However, while the way to

define an MSC immediately affects the syntax and expressivity of (fragments of)

the corresponding MSO logic, Theorems 4.4.1, 5.2.6, and 5.3.2 hold independently

of that modeling, for the following reason: there is a one-to-one correspondence

between an MSC structure (E, {Cp}p∈P ,Cc, λ) and its counterpart (E,≤, λ) with

≤ = (Cc∪
⋃

p∈P Cp)
∗. As the definition of (a run of) an MPA is robust against the

concrete modeling, too, Theorems 5.2.6 and 5.3.2 can be applied to any common

definition of what an MSC is. However, our logic can only be considered to be the

canonical (existential) MSO logic if MSCs are given by their graphs. We would

like to stress that, actually, our main results are not restricted to the FIFO setting

either and can be applied to MSCs with non-FIFO behavior in conjunction with

message contents, too.

In the following, we list several open problems of interest and give suggestions

what to do next:

– It remains open whether there is an EMSO[≤]-sentence (or even FO[≤]-

sentence) whose language is not in MPA. Note that we proved the corre-

sponding result for MSO[≤] only. Our conjecture is that there exists such

a sentence. It is also an open problem what the exact relation between

EMSO[≤,Cc] and MPA is.

– A further step might be to extend our results to infinite MSCs. In [Kus03],

Kuske extends the finite setting to the infinite one in terms of regular MSC

languages. As Hanf’s Theorem has a counterpart for infinite graphs, it

might be possible to obtain similar results.

– Our hierarchy of MPAs is primarily a hierarchy of weakly realizable MSC

languages [AEY00], as their implementation is not necessarily free from

deadlocks. It would be desirable to study deadlock-free MPAs in more

detail, which give rise to safely realizable MSC languages. In particular, it

would be worthwhile to study formalisms and logics that are implementable

in terms of a safe and deterministic MPA.

125

– In [Gen04], it is shown that any safe gc-HcMSC is implementable. It re-

mains to identify even larger sets of implementable HcMSCs. Recall that

the existence of a defining EMSO-sentence is a sufficient criterion for im-

plementability.

– In the context of traces, several temporal logics and their relation and com-

plexity have been studied [Thi95, Wal98, DG00, Leu02]. In the framework

of MSCs, similar studies are just at the beginning [MR00, MR04]. Of par-

ticular interest will be to find a canonical linear-time temporal logic, for

example in the sense of Kamp’s Theorem [Kam68, DG00].

Bibliography

[ABP97] A. Ayari, D. Basin, and A. Podelski. LISA: A specification language

based on WS2S. In Proceedings of Computer Science Logic, 12th In-

ternational Workshop, CSL ’98, Annual Conference of the EACSL,

Brno, Czech Republic, volume 1414 of Lecture Notes in Computer

Science, pages 18–34. Springer, 1997.

[AEY00] R. Alur, K. Etessami, and M. Yannakakis. Inference of Message Se-

quence Charts. In Proceedings of the 22nd International Conference

on Software Engineering. ACM, 2000.

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verifi-

cation of MSC graphs. In Proceedings of the 28th International Col-

loquium on Automata, Languages and Programming (ICALP 2001),

Crete, Greece, volume 2076 of Lecture Notes in Computer Science.

Springer, 2001.

[Ara98] J. Araújo. Formalizing sequence diagrams. In L. Andrade, A. Mor-

eira, A. Deshpande, and S. Kent, editors, Proceedings of the OOP-

SLA’98 Workshop on Formalizing UML. Why? How?, 1998.

[AY99] R. Alur and M. Yannakakis. Model checking of message sequence

charts. In Proceedings of the 10th International Conference on Con-

currency Theory (CONCUR 1999), Eindhoven, The Netherlands,

volume 1664 of Lecture Notes in Computer Science. Springer, 1999.

[BAL97] H. Ben-Abdallah and S. Leue. Syntactic detection of process diver-

gence and non-local choice in message sequence charts. In Proceed-

ings of the 3rd International Workshop on Tools and Algorithms for

Construction and Analysis of Systems (TACAS 1997), Enschede,

The Netherlands, volume Lecture Notes in Computer Science 1217,

pages 259–274. Springer, 1997.

128 Bibliography

[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISO specification

language LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz,

editors, The Formal Description Technique LOTOS, pages 23–73.

Elsevier Science Publishers North-Holland, 1989.

[BL01] B. Bollig and M. Leucker. Modelling, specifying, and verifying mes-

sage passing systems. In Claudio Bettini and Angelo Montanari,

editors, Proceedings of the 8th International Symposium on Tempo-

ral Representation and Reasoning (TIME 2001), Civdale del Friuli,

Italy, pages 240–247. IEEE Computer Society Press, 2001.

[BL04] B. Bollig and M. Leucker. Message-Passing Automata are expres-

sively equivalent to EMSO Logic. In Proceedings of the 15th In-

ternational Conference on Concurrency Theory (CONCUR 2004),

London, UK, volume 3170 of Lecture Notes in Computer Science.

Springer, 2004.

[BL05] B. Bollig and M. Leucker. Message-Passing Automata are expres-

sively equivalent to EMSO Logic. Theoretical Computer Science,

2005. to appear.

[BLL02] B. Bollig, M. Leucker, and P. Lucas. Extending Compositional Mes-

sage Sequence Graphs. In Proceedings of the 9th International Con-

ference on Logic for Programming, Artificial Intelligence, and Rea-

soning (LPAR 2002), Tbilisi, Georgia, volume 2514 of Lecture Notes

in Computer Science. Springer, 2002.

[BLN02] B. Bollig, M. Leucker, and T. Noll. Generalised regular MSC lan-

guages. In Proceedings of the 5th International Conference on Foun-

dations of Software Science and Computation Structures (FOSSACS

2002), Grenoble, France, volume 2303 of Lecture Notes in Computer

Science. Springer, 2002.

[Blu01] Specification of the Bluetooth System (version 1.1), 2001.

http://www.bluetooth.com.

[BM03] N. Baudru and R. Morin. Safe implementability of regular message

sequence chart specifications. In Proceedings of the ACIS Fourth

International Conference on Software Engineering, Artificial In-

telligence, Networking and Parallel/Distributed Computing (SNPD

2003), Lübeck, Germany, volume 2380 of Lecture Notes in Computer

Science. Springer, 2003.

Bibliography 129

[BM04] N. Baudru and R. Morin. The pros and cons of netcharts. In Proceed-

ings of the 15th International Conference on Concurrency Theory

(CONCUR 2004), London, UK, volume 3170 of Lecture Notes in

Computer Science. Springer, 2004.

[Büc60] J. Büchi. Weak second order logic and finite automata. Z. Math.

Logik, Grundlag. Math., 5:66–62, 1960.

[BV94] J. C. M. Baeten and C. Verhoef. Concrete process algebra. In

S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors, Handbook

of Logic in Computer Science, pages 149–268. Oxford University

Press, 1994.

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state ma-

chines. Journal of the ACM, 30(2), 1983.

[CE81] E. M. Clarke and E. A. Emerson. Design and Synthesis of Syn-

chronization Skeletons using Branching Time Temporal Logic. In

Proceedings of the Workshop on Logics of Programs, volume 131 of

Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The

MIT Press, Cambridge, Massachusetts, 1999.

[Cou90] B. Courcelle. The monadic second order logic of graphs I: recogniz-

able sets of finite graphs. Information and Computation, 85:12–75,

1990.

[DG00] V. Diekert and P. Gastin. LTL is expressively complete for

Mazurkiewicz traces. In Proceedings of the 27th International Collo-

quium on Automata, Languages and Programming (ICALP 2000),

Geneva, Switzerland, volume 1853 of Lecture Notes in Computer

Science, pages 211–222. Springer, 2000.

[DGK00] M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular au-

tomata for pomsets. Theoretical Computer Science, 247(1-2), 2000.

[DH01] W. Damm and D. Harel. LSCs: Breathing life into message sequence

charts. Formal Methods in System Design, 19:1:45–80., 2001.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World

Scientific, Singapore, 1995.

130 Bibliography

[Ebi95] Werner Ebinger. Logical definability of trace languages. In V. Diek-

ert and G. Rozenberg, editors, The Book of Traces, chapter 10, pages

382–390. World Scientific, Singapore, 1995.

[Elg61] C. C. Elgot. Decision problems of finite automata design and related

arithmetics. Trans. Amer. Math. Soc., 98:21–52, 1961.

[Gen04] B. Genest. L’Odyssée des Graphes de Diagrammes de Séquences

(MSC-Graphes). PhD thesis, Laboratoire d’Informatique Algorith-

mique: Fondements et Applications (LIAFA), 2004.

[GKM04] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem for a class

of communicating automata with effective algorithms. In Proceed-

ings of the 8th International Conference on Developments in Lan-

guage Theory (DLT 2004), Auckland, New Zealand, volume 3340 of

Lecture Notes in Computer Science. Springer, 2004.

[GMMP04] B. Genest, M. Minea, A. Muscholl, and D. Peled. Specifying and

verifying partial order properties using template MSCs. In Proceed-

ings of the 7th International Conference on Foundations of Software

Science and Computation Structures (FOSSACS 2004), Barcelona,

Spain. Lecture Notes in Computer Science, 2004.

[GMP01] E. Gunter, A. Muscholl, and D. Peled. Compositional message se-

quence charts. In Proceedings of the 7th International Conference

on Tools and Algorithms for the Construction and Analysis of Sys-

tems (TACAS 2001), Genova, Italy, volume 2031 of Lecture Notes

in Computer Science. Springer, 2001.

[GMSZ02] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state

high-level MSCs: Model-checking and realizability. In Proceedings

of the 29th International Colloquium on Automata, Languages and

Programming (ICALP 2002), Malaga, Spain, volume 2380 of Lecture

Notes in Computer Science. Springer, 2002.

[GRST96] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic

second-order logic over rectangular pictures and recognizability by

tiling systems. Information and Computation, 125(1):32 – 45, 1996.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics,

and Infinite Games, volume 2500 of Lecture Notes in Computer Sci-

ence. Springer, 2002.

Bibliography 131

[Han65] W. P. Hanf. Model-theoretic methods in the study of elementary

logic. In J. W. Addison, L. Henkin, and A. Tarski, editors, The

Theory of Models. North-Holland, Amsterdam, 1965.

[HJJ+95] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund,

R. Paige, T. Rauhe, and A. Sandholm. Mona: Monadic second-

order logic in practice. In Proceedings of the First International

Workshop on Tools and Algorithms for Construction and Analysis

of Systems (TACAS 1995), Aarhus, Denmark, volume 1019 of Lec-

ture Notes in Computer Science, pages 89–110. Springer, 1995.

[HK02] D. Harel and H. Kugler. Synthesizing state-based object systems

from LSCs specifications. Foundations of Computer Science, 13:1:5–

51, 2002.

[HM00] L. Hélouët and P. Le Magait. Decomposition of message sequence

charts. In Proceedings of SAM 2000, 2nd Workshop on SDL and

MSC. VERIMAG, IRISA, SDL Forum, 2000.

[HMK+05] J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and

P. S. Thiagarajan. A theory of regular MSC languages. Information

and Computation, 2005. to appear.

[HMKT99] J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thi-

agarajan. Towards a theory of regular MSC languages. Technical

Report RS-99-52, Department of Computer Science, University of

Aarhus, 1999.

[HMKT00a] J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thia-

garajan. On message sequence graphs and finitely generated regular

MSC languages. In Proceedings of the 27th International Colloquium

on Automata, Languages and Programming (ICALP 2000), Geneva,

Switzerland, volume 1853 of Lecture Notes in Computer Science.

Springer, 2000.

[HMKT00b] J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thi-

agarajan. Regular collections of message sequence charts. In Pro-

ceedings of the 25th International Symposium Mathematical Foun-

dations of Computer Science (MFCS 2000), Bratislava, Slovakia,

volume 1893 of Lecture Notes in Computer Science. Springer, 2000.

[ITU98] ITU-TS Recommendation Z.120anb: Formal Semantics of Message

Sequence Charts, 1998.

132 Bibliography

[ITU99] ITU-TS Recommendation Z.120: Message Sequence Chart 1999

(MSC99), 1999.

[Kam68] H. W. Kamp. Tense Logic and the Theory of Linear Order. PhD

thesis, University of California, Los Angeles, 1968.

[KL98] J.-P. Katoen and L. Lambert. Pomsets for message sequence charts.

In H. König and P. Langendörfer, editors, Formale Beschreibung-

stechniken für Verteilte Systeme, pages 197–208, Cottbus, Germany,

1998. Shaker Verlag.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite au-

tomata. In C. Shannon and J. McCarthy, editors, Automata Stud-

ies, Annals of Math. Studies 34, pages 3–40. Princeton, New Jersey,

1956.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical

Computer Science, 27:333–354, December 1983.

[Kus01] D. Kuske. Another step towards a theory of regular MSC languages.

Technical Report 36, Department of Mathematics and Computer

Science, University of Leicester, 2001.

[Kus02] D. Kuske. A further step towards a theory of regular MSC lan-

guages. In Proceedings of the 19th Annual Symposium on Theoreti-

cal Aspects of Computer Science (STACS 2002), Antibes - Juan les

Pins, France, volume 2285 of Lecture Notes in Computer Science.

Springer, 2002.

[Kus03] D. Kuske. Regular Sets of Infinite Message Sequence Charts. Infor-

mation and Computation, 187:80–109, 2003.

[Leu02] M. Leucker. Logics for Mazurkiewicz traces. PhD thesis, Lehrstuhl

für Informatik II, RWTH Aachen, 2002.

[LL95] P. B. Ladkin and S. Leue. Interpreting message flow graphs. Formal

Aspects of Computing, 7(5):473–509, 1995.

[LM04] M. Lohrey and A. Muscholl. Bounded MSC Communication. Infor-

mation and Computation, 189(2):160–181, 2004.

[LMM02] M. Leucker, P. Madhusudan, and S. Mukhopadhyay. Dynamic mes-

sage sequence charts. In Proceedings of the 22nd Conference on

Bibliography 133

Foundations of Software Technology and Theoretical Computer Sci-

ence (FSTTCS 2002), Kanpur, India, volume 2556 of Lecture Notes

in Computer Science. Springer, 2002.

[Loh03] M. Lohrey. Realizability of high-level message sequence charts: clos-

ing the gaps. Theoretical Computer Science, 309(1-3):529–554, 2003.

[Mad01] P. Madhusudan. Reasoning about Sequential and Branching Be-

haviours of Message Sequence Graphs. In Proceedings of the 28th

International Colloquium on Automata, Languages and Program-

ming (ICALP 2001), Crete, Greece, volume 2076 of Lecture Notes

in Computer Science. Springer, 2001.

[Mau96] S. Mauw. The formalization of message sequence charts. Computer

Networks and ISDN Systems, 28(12):1643-1657, 1996.

[Mil89] R. Milner. Communication and Concurrency. International Series

in Computer Science. Prentice Hall, 1989.

[MKRS98] M. Mukund, K. Narayan Kumar, J. Radhakrishnan, and M. Sohoni.

Towards a characterisation of finite-state message-passing systems.

In Proceedings of Advances in Computing Science (ASIAN 1998),

4th Asian Computing Science Conference, Manila, The Philippines,

volume 1538 of Lecture Notes in Computer Science. Springer, 1998.

[MKS00] M. Mukund, K. Narayan Kumar, and M. Sohoni. Synthesizing dis-

tributed finite-state systems from MSCs. In Proceedings of the 11th

International Conference on Concurrency Theory (CONCUR 2000),

University Park, PA, USA, volume 1877 of Lecture Notes in Com-

puter Science. Springer, 2000.

[MKT03] M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Netcharts:

Bridging the gap between HMSCs and executable specifications. In

Proceedings of the 14th International Conference on Concurrency

Theory (CONCUR 2003), Marseille, France, volume 2761 of Lecture

Notes in Computer Science, pages 296–30. Springer, 2003.

[MM01] P. Madhusudan and B. Meenakshi. Beyond message sequence

graphs. In Proceedings of the 21st Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS

2001), Bangalore, India, volume 2245 of Lecture Notes in Computer

Science. Springer, 2001.

134 Bibliography

[Mor01] R. Morin. On regular message sequence chart languages and rela-

tionships to Mazurkiewicz trace theory. In Proceedings of the 5th

International Conference on Foundations of Software Science and

Computation Structures (FOSSACS 2002), Grenoble, France, vol-

ume 2030 of Lecture Notes in Computer Science. Springer, 2001.

[Mor02] R. Morin. Recognizable sets of message sequence charts. In Pro-

ceedings of the 19th Annual Symposium on Theoretical Aspects of

Computer Science (STACS 2002), Antibes – Juan les Pins, France,

volume 2285 of Lecture Notes in Computer Science. Springer, 2002.

[MP99] A. Muscholl and D. Peled. Message sequence graphs and decision

problems on Mazurkiewicz traces. In Proceedings of the 24th In-

ternational Symposium on Mathematical Foundations of Computer

Science (MFCS 1999), Szklarska Poreba, Poland, volume 1672 of

Lecture Notes in Computer Science. Springer, 1999.

[MP01] A. Muscholl and D. Peled. From finite state communication pro-

tocols to high-level message sequence charts. In Proceedings of the

28th International Colloquium on Automata, Languages and Pro-

gramming (ICALP 2001), Crete, Greece, volume 2076 of Lecture

Notes in Computer Science. Springer, 2001.

[MPS98] A. Muscholl, D. Peled, and Z. Su. Deciding properties for message

sequence charts. In Proceedings of the 1st International Conference

on Foundations of Software Science and Computation Structures

(FOSSACS 1998), Lisbon, Portugal, volume 1578 of Lecture Notes

in Computer Science. Springer, 1998.

[MR97] S. Mauw and M. A. Reniers. High-level message sequence charts.

In Proceedings of the Eighth SDL Forum (SDL’97), pages 291–306,

1997.

[MR00] B. Meenakshi and R. Ramanujam. Reasoning about message pass-

ing in finite state environments. In Proceedings of the 27th In-

ternational Colloquium on Automata, Languages and Programming

(ICALP 2000), Geneva, Switzerland, volume 1853 of Lecture Notes

in Computer Science. Springer, 2000.

[MR04] B. Meenakshi and R. Ramanujam. Reasoning about layered message

passing systems. Computer Languages, Systems, and Structures,

30(3-4):529–554, 2004.

Bibliography 135

[MST02] O. Matz, N. Schweikardt, and W. Thomas. The monadic quanti-

fier alternation hierarchy over grids and graphs. Information and

Computation, 179(2), 2002.

[MT97] O. Matz and W. Thomas. The monadic quantifier alternation hier-

archy over graphs is infinite. In Proceedings of the 12th Annual IEEE

Symposium on Logic in Computer Science (LICS 1997), Warsaw,

Poland. IEEE Computer Society Press, 1997.

[Och95] E. Ochmański. Recognizable Trace Languages. In V. Diekert and

G. Rozenberg, editors, The Book of Traces, chapter 6, pages 167–

204. World Scientific, Singapore, 1995.

[Per91] D. Perry. VHDL. McGraw-Hill, New York, 1991.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of

the 18th IEEE Symposium on the Foundations of Computer Science

(FOCS 1977), pages 46–57, Providence, Rhode Island, 1977. IEEE

Computer Society Press.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated

Reasoning. Elsevier, 2001.

[SP99] P. Stevens and R. Pooley. Using UML: software engineering with

objects and components. Object Technology Series. Addison-Wesley

Longman, 1999.

[Thi95] P. S. Thiagarajan. A trace consistent subset of PTL. In Proceedings

of the 6th International Conference on Concurrency Theory (CON-

CUR 1995), Philadelphia, PA, USA, volume 962 of Lecture Notes

in Computer Science. Springer, 1995.

[Tho90] W. Thomas. On logical definability of trace languages. In V. Diekert,

editor, Proceedings of a workshop of the ESPRIT Basic Research Ac-

tion No 3166: Algebraic and Syntactic Methods in Computer Science

(ASMICS), Kochel am See, Bavaria, FRG (1989), Report TUM-

I9002, Technical University of Munich, pages 172–182, 1990.

[Tho91] W. Thomas. On Logics, Tilings, and Automata. In Proceedings

of the 18th International Colloquium on Automata, Languages and

Programming (ICALP 1991), Madrid, Spain, volume 510 of Lecture

Notes in Computer Science. Springer, 1991.

136 Bibliography

[Tho96] W. Thomas. Elements of an automata theory over partial orders. In

Proceedings of Workshop on Partial Order Methods in Verification

(POMIV 1996), volume 29 of DIMACS. AMS, 1996.

[Tho97a] W. Thomas. Automata theory on trees and partial orders. In

Proceedings of TAPSOFT 1997: Theory and Practice of Software

Development, 7th International Joint Conference CAAP/FASE,

Lille, France, volume 1214 of Lecture Notes in Computer Science.

Springer, 1997.

[Tho97b] W. Thomas. Languages, automata and logic. In A. Salomaa and

G. Rozenberg, editors, Handbook of Formal Languages, volume 3,

Beyond Words. Springer, Berlin, 1997.

[Wal98] I. Walukiewicz. Difficult configurations – on the complexity of LTrL.

In Proceedings of 25th International Colloquium on Automata, Lan-

guages and Programming (ICALP 1998), Aalborg, Denmark, volume

1443 of Lecture Notes in Computer Science, pages 140–151, 1998.

[Zie87] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O.

— Informatique Théorique et Applications, 21:99–135, 1987.

Appendix A

The Counterexample

We provide here the complete counterexample for the simpler transformation

from a graph acceptor into a finite MPA on page 93.

A

B C

DE

F G

HI

C−

0 1 2 3 4 5 6 7M :

Figure A.1: Counterexample for the simpler transformation

138 Appendix A. The Counterexample

a

b c

de

f g

hi

1 2 3 4 5 6 7Ha:

a

b c

de

f g

hi

1 2 3 4 5 6Hb:

a

b c

de

f g

hi

0 1 2 3 4 5 6Hc:

a

b c

de

f g

hi

0 1 2 3 4 5 6Hd:

Figure A.2: Counterexample for the simpler transformation

139

a

b c

de

f g

hi

0 1 2 3 4 5 6 7He:

a

b c

de

f g

hi

0 1 2 3 4 5 6 7Hf:

a

b c

de

f g

hi

0 1 2 3 4 5 6 7Hg:

a

b c

de

f g

hi

0 1 2 3 4 5 6 7Hh:

Figure A.3: Counterexample for the simpler transformation

140 Appendix A. The Counterexample

a

b c

de

f g

hi

1 2 3 4 5 6 7Hi:

Figure A.4: Counterexample for the simpler transformation

A

B C

DEA’

B’

F G

HI

0 1 2 3 4 5 6 7Megf:

Figure A.5: A witness for (He, 3?4, Hg, Hf)

141

A

B C

DE

F’

F G

HI

0 1 2 3 4 5 6 7Mba:

Figure A.6: A witness for (Hb, 2!1, Ha, Ha)

142 Appendix A. The Counterexample

A

B C

DE

B’

C’

D’

F G

HI

0 1 2 3 4 5 6 7Mgih:

Figure A.7: A witness for (Hg, 4?2, Hi, Hh)

143

A

B C

DE

H’

F G

HI

0 1 2 3 4 5 6 7Mcd:

Figure A.8: A witness for (Hc, 5!3, Hd, Hd)

144 Appendix A. The Counterexample

A

B C

DE

E’

F G

HI

0 1 2 3 4 5 6 7Mai:

Figure A.9: A witness for (Ha, 2!4, Hi, Hi)

145

A

B C

DE

G’

F G

H

I

0 1 2 3 4 5 6 7

Mc:

Figure A.10: A witness for (4-Sph(M,C−), 5?2, Hb, Hc)

Appendix B

Symbols and Notations

RAT � rational subsets of
�
, 11

REC � recognizable subsets of
�
, 12

C edge relation, 12

|G| cardinality of G, 12
���

set of graphs, 13
���

H set of graphs, 13

G�Σ′ projection, 13

λ|E′ restriction of λ to E ′, 13

G⇓e downwards closure, 14

G↓e strict downwards closure, 14

KQ Q-extensions of K, 14

MSO monadic second-order formulas, 15

FO first-order formulas, 16

EMSO existential monadic second-order formulas, 16

Σk Σk-formulas, 16

MSOK MSO-definable languages, 17

FOK FO-definable languages, 17

EMSOK EMSO-definable languages, 17

LK(Σk) Σk-definable languages, 17

LT T K locally threshold testable languages, 19

dG(e′, e) distance from e′ to e, 19

R-Sph(G, e) R-sphere of G around e, 19

LK(B) language of B relative to K, 21

GAK languages of graph acceptors, 21

k-GAK languages of graph acceptors with k-spheres, 21
�

words, 22

FA languages of finite automata, 24

148 Appendix B. Symbols and Notations

Lin(G) linearizations of G, 25

loc(a) agents involved in a, 26

Σ̃ distributed alphabet, 26

1 ��� unit trace, 27

c-RAT ��� c-rational subsets of
���

, 28

R ��� regular trace languages, 29

L `Σ̃ T trace inference, 29

P0
��� weak product trace languages, 29

P ��� product trace languages, 29

RP0
��� weak regular product trace languages, 29

RP ��� regular product trace languages, 29

AA languages of asynchronous automata, 31

PA languages of product automata, 33

[n] {1, . . . , n}, 34

� pictures, 34
� �

grids, 36

P processes, 39

Ch channels, 39

Act ! send actions, 39

Act ? receive actions, 39

Act actions, 39

Com communicating actions, 39

UM unmatched events of M , 40

p
�����

partial MSCs, 41
�����

MSCs, 41

MSC MSC languages, 41

1 ��� � unit MSC, 43

P (M) processes of M , 43

cG(M) communication graph of M , 43
�����

∀B universally-B-bounded MSCs, 44
�����

∃B existentially-B-bounded MSCs, 44

L(H) MSC language of H, 50

HcMSC MSC languages of HcMSCs, 53

gc-HcMSC MSC languages of gc-HcMSCs, 53

safe-gc-HcMSC MSC languages of safe gc-HcMSCs, 53

left-closed-gc-HcMSC MSC languages of left-closed gc-HcMSCs, 53

HMSC MSC languages of HMSCs, 53

gc-HMSC MSC languages of gc-HMSCs, 53

149

R ��� � regular MSC languages, 56

L `P M MSC inference, 58

P0��� � weak product MSC languages, 58

P ��� � product MSC languages, 58

RP0� ��� weak regular product MSC languages, 58

RP � ��� regular product MSC languages, 58

EP0��� � weak EMSO-definable product MSC languages, 58

EP ��� � EMSO-definable product MSC languages, 58

N -MPA N -MPAs, 62

MPAf finite MPAs, 62

MPA` locally-accepting MPAs, 62

det-MPA deterministic MPAs, 62

L(MPA) languages of MPAs, 63

MPA languages of finite MPAs, 63

ConfA configurations of A, 65

=⇒A global transition relation of A, 65

∀MPA ∀-bounded MPAs, 65

∃MPA ∃-bounded MPAs, 65

∀!MPA strongly-∀-bounded MPAs, 66

safe-MPA safe MPAs, 67

Index

action, 13

receive, 39

send, 39

agent, 26

alphabet, 12

dependence, 26

distributed, 26

arc, 80

asynchronous automaton

language of an, 31, 33

automaton

asynchronous, 30

finite, 23

message-passing, 61

monoid, 11

product, 32

BluetoothTM, 4

bounded, 14, 65

strongly, 65

strongly-universally, 65

universally, 44, 65

cardinality, 12

channel, 39

channel contents, 65

colorable, 80

colored, 80

communication graph, 43

concatenation

asynchronous, 43

trace, 27

condition, 21

configuration, 64

deadlock, 66

final, 65

initial, 65

reachable, 65

configurations, 64

data, 61

definable, 17

degree, 14, 80

bounded, 14

dependent, 26

distance, 19

downwards closure, 14

strict, 14

edge, 12

event, 13, 40

execution, 51

accepting, 51

final states, 12

finite automaton

language of a, 24

formula

existential, 16

first-order, 16

monadic second-order, 15

generated, 57

global transition relation, 65

graph, 12, 80

acyclic, 13

connected, 12

152 Index

extended, 14

graph acceptor, 21

language of a, 16

grid, 36

grid language, 36

Hasse diagram, 10

hierarchy

monadic quantifier-alternation, 17

Host Control Interface, 4

implementable, 63

iteration, 11

labeling function, 12

language, 11, 63

rational, 11

recognizable, 11

left-closed, 40, 51

letter position, 22

linearization, 25

locally threshold testable, 19

maximal, 10

message

found, 41

lost, 41

message contents, 47

message sequence chart, 40

partial, 40

message-passing automaton

N -, 62

deterministic, 62

extended, 64

finite, 62

locally-accepting, 62

minimal, 10

modeling, 1

monoid, 11

trace, 28

MSC language, 41

EMSO-definable product, 58

product, 58

regular, 56

regular product, 58

weak EMSO-definable product, 58

weak product, 58

weak regular product, 58

node, 12, 51, 102

final, 51

initial, 51

partial order, 10

partially ordered set, 10

picture, 34

poset, 10

process, 39

product, 11

projection, 13, 19, 42

radius, 21

relation

antisymmetric, 10

covering, 10

dependence, 26

edge, 12

reflexive, 10

successor, 22

symmetric, 26

transitive, 10

representation, 41

run, 23, 31, 33, 62

accepting, 24, 31, 33, 63

safe, 51, 66

sentence, 16

specification, 2

star-connected, 28

state, 11, 21, 23

global, 62

global final, 30, 33, 62

Index 153

global initial, 30, 33, 62, 64

initial, 12, 23

local, 30, 33, 61

superedge, 37

supergrids, 37

synchronization message, 61

total order, 10

totally ordered set, 10

trace, 27

trace language

product, 29

regular, 28

regular product, 29

weak product, 29

weak regular product, 29

transition, 23, 51

local, 33, 61

synchronizing, 30

transition relation

global, 64

tree, 102

unit, 11

variable

individual, 15

set, 15

vertice, 80

word, 22

Aachener Informatik-Berichte 155

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: biblio@informatik.rwth-aachen.de

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Inter-

national Workshop on the Language-Action Perspective on Communi-

cation Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free µ-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

156 Aachener Informatik-Berichte

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is

PSPACE-hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maen, Alexander Nyen, Thomas Weiler:

Vergleich von Anstzen zur Feature Modellierung bei der Softwarepro-

duktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

Aachener Informatik-Berichte 157

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on

Functional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mlle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Infor-

mation

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:

Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

∗ These reports are only available as a printed version.

Curriculum Vitae

Name Benedikt Michael Peter Bollig

Geburtsdatum 13.01.1975

Geburtsort Düsseldorf

Bildungsgang

1981 – 1985 Pestalozzi-Grundschule Neuss

1985 – 1994 Quirinus-Gymnasium Neuss

Abschluss: Allgemeine Hochschulreife

1994 – 2000 Studium der Informatik an der RWTH Aachen

Abschluss: Diplom

seit 2000 Wissenschaftlicher Angestellter am Lehrstuhl für Informatik II

(Prof. Dr. Klaus Indermark), RWTH Aachen

